早教吧作业答案频道 -->其他-->
(2011•普陀区三模)如图,已知半径为r的圆M的内接四边形ABCD的对角线AC和BD相互垂直且交点为P.(1)若四边形ABCD中的一条对角线AC的长度为d(0<d<2r),试求:四边形ABCD面积的最大值;
题目详情
(2011•普陀区三模)如图,已知半径为r的圆M的内接四边形ABCD的对角线AC和BD相互垂直且交点为P.

(1)若四边形ABCD中的一条对角线AC的长度为d(0<d<2r),试求:四边形ABCD面积的最大值;
(2)试探究:当点P运动到什么位置时,四边形ABCD的面积取得最大值,最大值为多少?
(3)对于之前小题的研究结论,我们可以将其类比到椭圆的情形.如图2,设平面直角坐标系中,已知椭圆Γ:
+
=1(a>b>0)的内接四边形ABCD的对角线AC和BD相互垂直且交于点P.试提出一个由类比获得的猜想,并尝试给予证明或反例否定.

(1)若四边形ABCD中的一条对角线AC的长度为d(0<d<2r),试求:四边形ABCD面积的最大值;
(2)试探究:当点P运动到什么位置时,四边形ABCD的面积取得最大值,最大值为多少?
(3)对于之前小题的研究结论,我们可以将其类比到椭圆的情形.如图2,设平面直角坐标系中,已知椭圆Γ:
| x2 |
| a2 |
| y2 |
| b2 |
▼优质解答
答案和解析
(1)因为对角线互相垂直的四边形ABCD面积S=
,
而由于|AC|=d为定长,
则当|BD|最大时,四边形ABCD面积S取得最大值.由圆的性质,垂直于AC的弦中,直径最长,
故当且仅当BD过圆心M时,四边形ABCD面积S取得最大值,最大值为dr.
(2)由题意,不难发现,当点P运动到与圆心M重合时,对角线AC和BD的长同时取得最大值|AC|=|BD|=2r,
所以此时四边形ABCD面积S取得最大值,最大值为2r2.
(3)类比猜想1:若对角线互相垂直的椭圆内接四边形ABCD中的一条对角线长确定时,当且仅当另一条对角线通过椭圆中心时,该椭圆内接四边形面积最大.
类比猜想2:当点P在椭圆中心时,对角线互相垂直的椭圆内接四边形ABCD的面积最大.
以上两个均为正确的猜想,要证明以上两个猜想,都需先证:椭圆内的平行弦中,过椭圆中心的弦长最大.
证:设椭圆的方程为
+
=1(a>b>0),平行弦MN的方程为y=kx+m,
联立可得b2x2+a2(kx+m)2-a2b2=0⇒(b2+a2k2)x2+2kma2x+m2a2-a2b2=0
不妨设M(x1,y1)、N(x2,y2),
则|MN|=
|x1−x2|
=
•
=
•
=
•
由于平行弦的斜率k保持不变,故可知当且仅当m=0时,即当直线经过原点时,
|MN|取得最大值|MN|=2ab
(*).特别地,当斜率不存在时,此结论也成立.
由以上结论可知,类比猜想一正确.又对于椭圆内任意一点P构造的对角线互相垂直的椭圆内接四边形,我们都可以将对角线平移到交点与椭圆中心O重合的椭圆内接四边形A1B1C1D1,而其中|AC|≤|A1C1|,|BD|≤|B1D1|,
所以必有SABCD≤SA1B1C1D1.即证明了猜想二也是正确的.
类比猜想3:当点P•在椭圆中心,且椭圆内接四边形的两条互相垂直的对角线恰为椭圆长轴和短轴时,四边形面积取得最大值2ab.
要证明此猜想,也需先证“椭圆内的平行弦中,过椭圆中心的弦长最大.”在此基础上,可参考以下两种续证方法.
证法一:当点P在椭圆中心时,不妨设对角线AC所在直线的斜率为k.
(i)当k=0时,AC即为椭圆长轴,又AC⊥BD,故BD是椭圆的短轴.
所以此时椭圆内接四边形ABCD的面积为SABCD=2ab.
(ii)当k≠0时,对角线BD的斜率为−
.由此前证明过程中的(*)可知,|AC|=2ab
,
若将−
代换式中的k,则可得弦BD的长度,|BD|=2ab
| |AC|•|BD| |
| 2 |
而由于|AC|=d为定长,
则当|BD|最大时,四边形ABCD面积S取得最大值.由圆的性质,垂直于AC的弦中,直径最长,
故当且仅当BD过圆心M时,四边形ABCD面积S取得最大值,最大值为dr.
(2)由题意,不难发现,当点P运动到与圆心M重合时,对角线AC和BD的长同时取得最大值|AC|=|BD|=2r,
所以此时四边形ABCD面积S取得最大值,最大值为2r2.
(3)类比猜想1:若对角线互相垂直的椭圆内接四边形ABCD中的一条对角线长确定时,当且仅当另一条对角线通过椭圆中心时,该椭圆内接四边形面积最大.
类比猜想2:当点P在椭圆中心时,对角线互相垂直的椭圆内接四边形ABCD的面积最大.
以上两个均为正确的猜想,要证明以上两个猜想,都需先证:椭圆内的平行弦中,过椭圆中心的弦长最大.
证:设椭圆的方程为
| x2 |
| a2 |
| y2 |
| b2 |
联立可得b2x2+a2(kx+m)2-a2b2=0⇒(b2+a2k2)x2+2kma2x+m2a2-a2b2=0
不妨设M(x1,y1)、N(x2,y2),
则|MN|=
| 1+k2 |
=
| 1+k2 |
(
|
=
| ||
| b2+a2k2 |
| 4k2m2a4−4(m2a2−a2b2)(b2+a2k2) |
=
| ||
| b2+a2k2 |
| 4a2b2(a2k2+b2−m2) |
由于平行弦的斜率k保持不变,故可知当且仅当m=0时,即当直线经过原点时,
|MN|取得最大值|MN|=2ab
| ||
|
由以上结论可知,类比猜想一正确.又对于椭圆内任意一点P构造的对角线互相垂直的椭圆内接四边形,我们都可以将对角线平移到交点与椭圆中心O重合的椭圆内接四边形A1B1C1D1,而其中|AC|≤|A1C1|,|BD|≤|B1D1|,
所以必有SABCD≤SA1B1C1D1.即证明了猜想二也是正确的.
类比猜想3:当点P•在椭圆中心,且椭圆内接四边形的两条互相垂直的对角线恰为椭圆长轴和短轴时,四边形面积取得最大值2ab.
要证明此猜想,也需先证“椭圆内的平行弦中,过椭圆中心的弦长最大.”在此基础上,可参考以下两种续证方法.
证法一:当点P在椭圆中心时,不妨设对角线AC所在直线的斜率为k.
(i)当k=0时,AC即为椭圆长轴,又AC⊥BD,故BD是椭圆的短轴.
所以此时椭圆内接四边形ABCD的面积为SABCD=2ab.
(ii)当k≠0时,对角线BD的斜率为−
| 1 |
| k |
| ||
|
若将−
| 1 |
| k |
|
看了 (2011•普陀区三模)如图...的网友还看了以下:
已知下列命题:①有两个侧面是矩形的四棱柱是直四棱柱;②若一个三棱锥三个侧面都是全等的等腰三角形,则 2020-04-08 …
已知四阶方阵A的秩为2,其伴随矩阵A*的秩=已知四阶方阵A的秩为2,其伴随矩阵A*的秩=. 2020-04-13 …
已知球O的球面有四点S,A,B,C,其中O,A,B,C,四点共面,△ABC是边长为2的已知球O的球 2020-04-26 …
四边形的四个顶点必须按顺时针或逆时针方向?还是没有要求呢如题1:如果已知平行四边形ABCD中A(2 2020-06-06 …
(20分)已知为的外心,以线段为邻边作平行四边形,第四个顶点为,再以为邻边作平行四边形,它的第四个 2020-06-18 …
两道高一数学数列题 急~~1.已知四个数成等比数列,其积为1,第2项与第3项之和为-3/2,求这 2020-06-27 …
若数列的前四项为2,0,2,0,则这个数列的通项公式不能是[]A.an=1+(-1)n+1B.an 2020-07-09 …
已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.(1)若该四棱锥的左视图为直角三角形,则它 2020-07-13 …
已知数列,找规律.已知数列第1行为1,第2行为-1/2,1/6.第三行为-1/12,1/20,-1 2020-07-18 …
已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.(1)若该四棱锥的左视图为直角三角形,则它 2020-08-01 …
扫描下载二维码