早教吧作业答案频道 -->数学-->
关于无理和有理函数的定义问题如果是y=ex(是相乘),它可以说是有理函数因为是一个多项式,但根据百度百科查到的无理函数定义,这个函数中包含无理数e,所以又是无理函数,
题目详情
关于无理和有理函数的定义问题
如果是y=ex(是相乘),它可以说是有理函数因为是一个多项式,但根据百度百科查到的无理函数定义,这个函数中包含无理数e,所以又是无理函数,
如果是y=ex(是相乘),它可以说是有理函数因为是一个多项式,但根据百度百科查到的无理函数定义,这个函数中包含无理数e,所以又是无理函数,
▼优质解答
答案和解析
y=e*x
很简单,我也搜了“有理函数”的定义,
“有理函数”中的“有理”与“有理数”中的“有理”不是同一个概念 .
即 无理函数并不是含无理数的函数,计算结果可能是有理数呢.
如 y=根号x ,就是无理函数,但根号4的结果是2,这可是有理数
很简单,我也搜了“有理函数”的定义,
“有理函数”中的“有理”与“有理数”中的“有理”不是同一个概念 .
即 无理函数并不是含无理数的函数,计算结果可能是有理数呢.
如 y=根号x ,就是无理函数,但根号4的结果是2,这可是有理数
看了 关于无理和有理函数的定义问题...的网友还看了以下:
若函数y=ax与y=-b/x在零到正无穷都是减函数,则y=ax2+bx在领到正无穷上是什么函数具体 2020-05-13 …
下列三个命题下列三个命题1.若定义域在R上的函数f(x)在[0,正无穷)上是增函数,在(负无穷,0 2020-05-17 …
当x→0时,ex-cosx是x2的()A.等价无穷小B.低阶无穷小C.高阶无穷小D.同阶但非等价的 2020-07-20 …
只有上界或只有下界的函数是无界函数吗?“无界函数必发散”对吗“无界函数必发散”发散不就是无极限的意 2020-07-31 …
一个有界函数与一个无界函数的和一定是无界函数吗?还有一个奇偶函数与一个非奇偶函数的和是什么函数`` 2020-07-31 …
增函数是无限函数吗?学了实变函数的,比如y=x,它是无界函数,是无限函数吗?即x取无穷大,那么y的 2020-07-31 …
函数y=f(x)在1,正无穷)上是增函数,则函数的单调递增区间是1,正无穷)。这为什么是函数y=f 2020-08-01 …
1.若一次函数y=kx+b在(-无穷,+无穷)上是单调减函数,则k的取值范围是若一次函数y=kx+ 2020-08-01 …
关于无理和有理函数的定义问题如果是y=ex(是相乘),它可以说是有理函数因为是一个多项式,但根据百 2020-08-02 …
已知实数a≥,函数y=ex-ax是区间[-ln3,0)上的增函数,设函数f(x)=ax3-x,,(Ⅰ 2020-12-09 …