早教吧作业答案频道 -->数学-->
定积分(x+2)dx/(x^2+2x+2),被积函数属于-2到0,
题目详情
定积分(x+2)dx/(x^2+2x+2),被积函数属于-2到0,
▼优质解答
答案和解析
∫(x+2)dx/(x^2+2x+2)
=∫ [(1/2)(2x+2)+1]dx / (x^2+2x+2)
=∫ [(1/2)d(x^2+2x+2)/ (x^2+2x+2)]+ [dx / ((x+1)^2+1)]
=(1/2)ln(x^2+2x+2)+arctan(x+1) |(-2,0)
=π/2
=∫ [(1/2)(2x+2)+1]dx / (x^2+2x+2)
=∫ [(1/2)d(x^2+2x+2)/ (x^2+2x+2)]+ [dx / ((x+1)^2+1)]
=(1/2)ln(x^2+2x+2)+arctan(x+1) |(-2,0)
=π/2
看了 定积分(x+2)dx/(x^...的网友还看了以下: