早教吧作业答案频道 -->其他-->
一个多面体如图,ABCD是边长为a的正方形,AB=FB,FB⊥平面ABCD,ED∥FB,G,H分别为AE,CE中点.(1)试问:这个多面体是几多面体(不必证明)?(2)求证:GH∥平面ACF;(3)当平面ACE⊥平面
题目详情
一个多面体如图,ABCD是边长为a的正方形,AB=FB,FB⊥平面ABCD,ED∥FB,G,H分别为AE,CE中点.(1)试问:这个多面体是几多面体(不必证明)?
(2)求证:GH∥平面ACF;
(3)当平面ACE⊥平面ACF时,求DE的长.
▼优质解答
答案和解析
(1)是7多面体; (4分)
(2)证明:如图,连接AC,在△ACE中,
∵G,H分别为AE,CE中点,∴GH∥AC(6分)
又AC⊂平面ACF,且GH⊄平面ACF,(8分)
所以GH∥平面ACF; (9分)
(3)如图,连接DB,交AC于O,连接EO,FO,
∵ABCD是正方形,FB⊥平面ABCD,ED∥FB,
∴Rt△ADE≌Rt△CDE,得AE=CE,EO⊥AC,
∵EO⊂平面ACE,AC⊂平面ACF,AC∩OF=O,
∴只要EO⊥FO,就有平面ACE⊥平面ACF,(10分)
设DE的长为x,在Rt△ODE中,OE2=x2+
a2,
在Rt△OBF中,OF2=a2+
a2=
a2,EF2=2a2+(x-a)2EF2=OE2+OF2,解得x=
a
即平面ACE⊥平面ACF时,DE的长为
a(15分)
(如求二面角E-AC-E的平面角也可相应得分,但不提倡)
(1)是7多面体; (4分)(2)证明:如图,连接AC,在△ACE中,
∵G,H分别为AE,CE中点,∴GH∥AC(6分)
又AC⊂平面ACF,且GH⊄平面ACF,(8分)
所以GH∥平面ACF; (9分)
(3)如图,连接DB,交AC于O,连接EO,FO,
∵ABCD是正方形,FB⊥平面ABCD,ED∥FB,

∴Rt△ADE≌Rt△CDE,得AE=CE,EO⊥AC,
∵EO⊂平面ACE,AC⊂平面ACF,AC∩OF=O,
∴只要EO⊥FO,就有平面ACE⊥平面ACF,(10分)
设DE的长为x,在Rt△ODE中,OE2=x2+
| 1 |
| 2 |
在Rt△OBF中,OF2=a2+
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
即平面ACE⊥平面ACF时,DE的长为
| 1 |
| 2 |
(如求二面角E-AC-E的平面角也可相应得分,但不提倡)
看了 一个多面体如图,ABCD是边...的网友还看了以下:
在长方体ABCD-A1B1C1D1中,A1B1=B1C1=3,BB1=4,点B1在平面A1BC1上 2020-05-16 …
有关奇偶函数的问题设g(x)为奇函数,且h=f(g(x)),证明:当f(x)为奇函数时,h(x)必 2020-06-07 …
H和K是群G的正规子群,且HK=G.证:G/(H∩K)是到(G/H)×(G/K)的同构.我的思路是 2020-07-09 …
求证E,F,G,M,N,H六点共面已知正方体ABCD-A1B1C1D1中,点E,F,G,H,M,N 2020-07-09 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
设△ABC的外心为O,重心为G,取点H,使OH=OA+OB+OC.求证:(Ⅰ)点H为△ABC的垂心 2020-07-30 …
三角形ABC的外心为O,有一点H,向量OH=向量OA+向量OB+向量OC,求证H为重心注意是重心! 2020-07-30 …
一个简单多变函数的积分证明..f(x)=∫h(x,t)dt=h(x,g(x))g(x)+∫hx(x 2020-08-02 …
学数学的烦恼设G是一个2n阶有限交换群,其中n是一个奇数.证明:G有且只有一个2阶元素.证:依题意, 2020-11-03 …
近世代数两题,第一题:N是群G的正规子群,L为G/N的子群,求证:存在H,有H为G的子群,且L=H/ 2020-11-08 …