早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•赤峰模拟)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.(Ⅰ)求证:AC⊥平面BDEF;(Ⅱ)求证:平面BDG

题目详情
(2014•赤峰模拟)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.
(Ⅰ)求证:AC⊥平面BDEF;
(Ⅱ)求证:平面BDGH∥平面AEF;
(Ⅲ)求多面体ABCDEF的体积.
▼优质解答
答案和解析
(Ⅰ)证明:∵四边形ABCD是正方形,
∴AC⊥BD.
又∵平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,
且AC⊂平面ABCD,
∴AC⊥平面BDEF;
(Ⅱ)证明:在△CEF中,
∵G、H分别是CE、CF的中点,
∴GH∥EF,
又∵GH⊄平面AEF,EF⊂平面AEF,
∴GH∥平面AEF,
设AC∩BD=O,连接OH,在△ACF中,
∵OA=OC,CH=HF,
∴OH∥AF,
又∵OH⊄平面AEF,AF⊂平面AEF,
∴OH∥平面AEF.
又∵OH∩GH=H,OH、GH⊂平面BDGH,
∴平面BDGH∥平面AEF.
(Ⅲ)由(Ⅰ),得 AC⊥平面BDEF,
又∵AO=
2
,四边形BDEF的面积S=3×2
2
=6
2

∴四棱锥A-BDEF的体积V1=
1
3
×AO×S=4,
同理,四棱锥C-BDEF的体积V2=4.
∴多面体ABCDEF的体积V=8.
看了 (2014•赤峰模拟)如图,...的网友还看了以下: