早教吧作业答案频道 -->数学-->
已知△ABC中,a,b,c为角A.B.C的对边,且a+c=2b,A-C=π/3求sinB的值2sin[(A+C)/2]*cos[(A-C)/2]=2sinBsin[(A+C)/2]*cos(pi/6)=sinB这一步我看不懂,为什么1/2cos[(A-C)/2]=cos(pi/6)
题目详情
已知 △ABC中,a,b,c为角A.B.C的对边,且a+c=2b,A-C=π/3 求sinB的值
2sin[(A+C)/2] * cos[(A-C)/2] = 2sinB
sin[(A+C)/2] * cos(pi/6) = sinB
这一步我看不懂,为什么1/2 cos[(A-C)/2] =cos(pi/6)
2sin[(A+C)/2] * cos[(A-C)/2] = 2sinB
sin[(A+C)/2] * cos(pi/6) = sinB
这一步我看不懂,为什么1/2 cos[(A-C)/2] =cos(pi/6)
▼优质解答
答案和解析
因为 a + c = 2b
由正弦定理,知:
sinA +sinC = 2sinB
2sin[(A+C)/2] * cos[(A-C)/2] = 2sinB
sin[(A+C)/2] * cos(pi/6) = sinB
因为A + B + C = 180
所以:(A+C)/2 = pi/2 - B/2
所以:
cos(B/2) * √3/2 = 2sin(B/2)cos(B/2)
显然B/2不等于pi/2,cos(B/2)不等于0
所以:
sin(B/2) = √3/4
cos(B/2) = √13/4
sinB = 2sin(B/2)cos(B/2) = √39/8
由正弦定理,知:
sinA +sinC = 2sinB
2sin[(A+C)/2] * cos[(A-C)/2] = 2sinB
sin[(A+C)/2] * cos(pi/6) = sinB
因为A + B + C = 180
所以:(A+C)/2 = pi/2 - B/2
所以:
cos(B/2) * √3/2 = 2sin(B/2)cos(B/2)
显然B/2不等于pi/2,cos(B/2)不等于0
所以:
sin(B/2) = √3/4
cos(B/2) = √13/4
sinB = 2sin(B/2)cos(B/2) = √39/8
看了 已知△ABC中,a,b,c为...的网友还看了以下:
matlab解中学三角函数方程数学题,不会求大大~~~~~~~~~~[a,b,c,A,B,C]=s 2020-05-14 …
1、已知a,b,c互不相等求2a-b-c/(a-b)(b-c)+2b-c-a/(b-c)(b-a) 2020-05-16 …
关于一元二次方程解的情况题:已知实数a,b,c,且a^2+b^2+c^2=a+b+c=2,求a,b 2020-05-17 …
初中数学c/(c-b)=-c(a-b)/(b-c)(a-b)c/(c-b)=-c(a-b)/(b- 2020-06-06 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
a(b-c)^5+b(c-a)^5+c(a-b)^5分解为(a-b)(b-c)(c-a)L(aa( 2020-07-09 …
1.已知a,b,c∈R.a+b+c=1a²+b²+c²=1/2求证c≥02(1)已知a,c是正实数 2020-07-14 …
利用(a+b+c)^2=a^2+b^2^c^2+2ab+2ac+abc,推导(a+b+c)^2+a 2020-07-30 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …
已知a、b、c满足a<b<c,ab+bc+ac=0,abc=1,则()A.|a+b|>|c|B.|a 2020-11-01 …