早教吧作业答案频道 -->数学-->
综合与实践:问题情境:在综合实践课上,老师让同学们以“正方形纸片的剪拼”为主题展开教学活动,如图1,将一张正方形纸片ABCD沿对角线BD剪开,得到△ABD和△BCD,点O是对角线BD的
题目详情
综合与实践:
问题情境:
在综合实践课上,老师让同学们以“正方形纸片的剪拼”为主题展开教学活动,如图1,将一张正方形纸片ABCD沿对角线BD剪开,得到△ABD和△BCD,点O是对角线BD的中点.
操作发现:
(1)将图(1)中的△BCD沿DA方向平移,点D的对应点为D′,点B的对应点为B′,点O的对应点为O′,B′D′与AB交于点P,D′C与BD交于点Q,得到图(2),则四边形D′PBQ的形状是___.
(2)“实践小组”的同学将图(1)中的△BCD以点D为旋转中心,按顺时针方向旋转45°,得到△B′C′D,点O的对应点为O′,B′C′与AB交于点E,连接AO,O′C′交于点F,得到图(3),发现四边形AEC′F是菱形,请你证明这个结论.
实践探究:
(3)“创新小组”在实践小组操作的基础上,将图(3)中的△B′C′D以点C′为旋转中心,按逆时针方向旋转,使得C′D′⊥AD,垂足为M,B′C′⊥AB,垂足为N,分别连接OM,MO′,O′N,ON,得到图(4),他们认为四边形OMO′N是正方形.“创新小组”的发现是否正确?请你说明理由.
(4)请你参照以上操作,将图(1)中的△BCD在同一平面内进行一次图形变换,得到△B′C′D′,在图(5)中画出图形变换后构造出的新图形.标明字母,说明图形变换及构图方法,写出你发现的结论,不必证明.
问题情境:
在综合实践课上,老师让同学们以“正方形纸片的剪拼”为主题展开教学活动,如图1,将一张正方形纸片ABCD沿对角线BD剪开,得到△ABD和△BCD,点O是对角线BD的中点.
操作发现:

(1)将图(1)中的△BCD沿DA方向平移,点D的对应点为D′,点B的对应点为B′,点O的对应点为O′,B′D′与AB交于点P,D′C与BD交于点Q,得到图(2),则四边形D′PBQ的形状是___.
(2)“实践小组”的同学将图(1)中的△BCD以点D为旋转中心,按顺时针方向旋转45°,得到△B′C′D,点O的对应点为O′,B′C′与AB交于点E,连接AO,O′C′交于点F,得到图(3),发现四边形AEC′F是菱形,请你证明这个结论.
实践探究:
(3)“创新小组”在实践小组操作的基础上,将图(3)中的△B′C′D以点C′为旋转中心,按逆时针方向旋转,使得C′D′⊥AD,垂足为M,B′C′⊥AB,垂足为N,分别连接OM,MO′,O′N,ON,得到图(4),他们认为四边形OMO′N是正方形.“创新小组”的发现是否正确?请你说明理由.
(4)请你参照以上操作,将图(1)中的△BCD在同一平面内进行一次图形变换,得到△B′C′D′,在图(5)中画出图形变换后构造出的新图形.标明字母,说明图形变换及构图方法,写出你发现的结论,不必证明.
▼优质解答
答案和解析
(1)∵△B'C'D'是△BCD平移得到,
∴B'D'∥BD,AD∥B'C',
∴四边形PBQD'是平行四边形,
故答案为平行四边形;
(2)∵四边形ABCD为正方形,∠ADB=∠CDB=45°,
∴将△BCD以点D为旋转中心,顺时针旋转45°后,点C′落在BD上,点B′落在DA的延长线上.
∵AB⊥AD,C′O′⊥AD,
∴AB∥O′C′.
∵B′C′⊥BD,AO⊥BD,
∴B′C′∥AO.
∴四边形AEC′F是平行四边形.
∵BD=B′D′,AD=C′D,
∴AB′=BC′,
又∵∠EAB′=∠EC′B,∠B=∠B′=45°,
∴△AB′E≌△C′BE,
∴AE=EC′,
∴四边形AEC′F菱形.
(3)“创新小组”的发现是正确的.
如图1,
连接OA,O′C′,则四边形ANC′M是矩形.
∵△C′MD,△AB′N是等腰直角三角形.
∴DM=MC′,AN=B′N,
又∵AB=B′C′=C′D′=AD,
∴AM=D′M=BN=NC′.
又∵OA=OD=OB,O′C′=O′D′=O′B′,
∴OA=O′C′,
∵∠OAD=∠O′D′M=∠O′C′N=∠B=45°,
∴△OAM≌△O′D′M≌△O′C′N≌△OBN,
∴OM=O′M=O′N=ON,∠MOA=∠NOB
又∵OA⊥BD,∠AOB=90°,
∴∠NOM=90°,
∴四边形NOMO′是正方形.
(4)如图2所示.
构图方法:将△BCD沿BD方向平移,得到△B′C'D′,
连接AB′、DC'.
结论:四边形AB′C'D是平行四边形.
理由:∵△B'C'D'是△BCD沿BD方向平移所得,∴AD=B'C',AD∥B'C',∴∠ADB'=∠C'B'D,
在△AB'D和△CDB'中,
,
∴△AB'D≌△CDB',
∴AD=C'B',
∵AD∥B'C',
∴四边形AB′C'D是平行四边形.
∴B'D'∥BD,AD∥B'C',
∴四边形PBQD'是平行四边形,
故答案为平行四边形;
(2)∵四边形ABCD为正方形,∠ADB=∠CDB=45°,
∴将△BCD以点D为旋转中心,顺时针旋转45°后,点C′落在BD上,点B′落在DA的延长线上.
∵AB⊥AD,C′O′⊥AD,
∴AB∥O′C′.
∵B′C′⊥BD,AO⊥BD,
∴B′C′∥AO.
∴四边形AEC′F是平行四边形.
∵BD=B′D′,AD=C′D,
∴AB′=BC′,
又∵∠EAB′=∠EC′B,∠B=∠B′=45°,
∴△AB′E≌△C′BE,
∴AE=EC′,
∴四边形AEC′F菱形.
(3)“创新小组”的发现是正确的.
如图1,

∵△C′MD,△AB′N是等腰直角三角形.
∴DM=MC′,AN=B′N,
又∵AB=B′C′=C′D′=AD,
∴AM=D′M=BN=NC′.
又∵OA=OD=OB,O′C′=O′D′=O′B′,
∴OA=O′C′,
∵∠OAD=∠O′D′M=∠O′C′N=∠B=45°,
∴△OAM≌△O′D′M≌△O′C′N≌△OBN,
∴OM=O′M=O′N=ON,∠MOA=∠NOB
又∵OA⊥BD,∠AOB=90°,
∴∠NOM=90°,
∴四边形NOMO′是正方形.
(4)如图2所示.

构图方法:将△BCD沿BD方向平移,得到△B′C'D′,
连接AB′、DC'.
结论:四边形AB′C'D是平行四边形.
理由:∵△B'C'D'是△BCD沿BD方向平移所得,∴AD=B'C',AD∥B'C',∴∠ADB'=∠C'B'D,
在△AB'D和△CDB'中,
|
∴△AB'D≌△CDB',
∴AD=C'B',
∵AD∥B'C',
∴四边形AB′C'D是平行四边形.
看了 综合与实践:问题情境:在综合...的网友还看了以下:
把一个棱长5cm的正方体木块,从它的上面中心位置挖去一个横截面边长为2cm的正方形的长方体(和对面 2020-05-22 …
求y=cos(X/2+π/4)的对称轴方程和对称中心点坐标 2020-08-02 …
已知函数fx=2sin^2(兀/4-x)-√3cos2x)(1)求fx的对称轴方程和对称中心 2020-08-02 …
请教一句话的汉翻英人生观(outlookonlife)是人们对于人生目的和意义的根本看法,它决定着人 2020-11-01 …
阅读下表的内容,填写解决的方法和对策。小明的问题解决的方法和对策小明遇到了青春期的烦恼。上初中后,脸 2020-11-02 …
(2010•长宁区一模)2010年11月15日某区的火灾事件给予我们很大启示:当遇到紧急情况时,要根 2020-11-05 …
通常恒星要向外传输能量有两种:辐射方式和对流方式.为什么一些恒星内部核心处是辐射,外层是对流;一些核 2020-12-16 …
2002年诺贝尔化学奖的一半授予了美国科学家约翰·芬恩、日本科学家田中耕一,以表彰他们“发明了对生物 2021-01-22 …
下列实验方法和对应的化学方程式均正确的是()A.用点燃的方法除去O2中的H2H2+O2点燃.H2OB 2021-02-01 …
下列实验方法和对应的化学方程式均正确的是()A.用点燃的方法除去O2中的H2----H2+O2点燃. 2021-02-01 …