早教吧作业答案频道 -->其他-->
(1)如图1,点M是正方形ABCD内一定点,请你在图1中过点M作一条直线,使它将矩形ABCD分成相等的两部分.(只需保留作图痕迹)(2)如图2,在平面直角坐标系中,直角梯形OBCD是我市城东新
题目详情
(1)如图1,点M是正方形ABCD内一定点,请你在图1中过点M作一条直线,使它将矩形ABCD分成相等的两部分.(只需保留作图痕迹)
(2)如图2,在平面直角坐标系中,直角梯形OBCD是我市城东新区开发用地示意图,其中DC∥OB,OB=8,BC=6,CD=6.新区管委会(其占地面积不计)设在点P(5,3)处,为了方便驻区单位,准备过点P修一条笔直的道路(路的宽度不计),并且使这条路所在的直线L将直角梯形OBCD分成面积相等的两部分,你认为直线L是否存在?若存在,求出直线L的表达式;若不存在,请说明理由.

(2)如图2,在平面直角坐标系中,直角梯形OBCD是我市城东新区开发用地示意图,其中DC∥OB,OB=8,BC=6,CD=6.新区管委会(其占地面积不计)设在点P(5,3)处,为了方便驻区单位,准备过点P修一条笔直的道路(路的宽度不计),并且使这条路所在的直线L将直角梯形OBCD分成面积相等的两部分,你认为直线L是否存在?若存在,求出直线L的表达式;若不存在,请说明理由.

▼优质解答
答案和解析
(1)如图②连接AC、BD交于O则O为正方形对称中心.
作直线MO,直线MO即为所求.
(2)如图③存在直线l,
过点D的直线作DA⊥OB于点A,
则点P(5,3)为矩形ABCD的对称中心,
∴过点P的直线只要平分△DOA的面积即可,
易知,在OD边上必存在点H使得PH将△DOA面积平分.
从而,直线PH平分梯形OBCD的面积,即直线PH为所求直线l
设直线PH的表达式为y=kx+b且点P(5,3),
∴3=5k+b即b=3-5k,
∴y=kx+3-5k,
∵直线OD的表达式为y=3x,
∴
,
解之
.
∴点H的坐标为(x=
,y=
)
把x=2代入直线PH的解析式y=kx+3-5k,得y=3-k,
∴PH与线段AD的交点F(2,3-k),
∴0<3-k<6,
∴-3<k<3.
∴S△DHF=
[6-(3-k)•(2-
)=
×
×2×6,
∴解得:k=-3+2
.(k=-3-2

作直线MO,直线MO即为所求.
(2)如图③存在直线l,
过点D的直线作DA⊥OB于点A,
则点P(5,3)为矩形ABCD的对称中心,
∴过点P的直线只要平分△DOA的面积即可,
易知,在OD边上必存在点H使得PH将△DOA面积平分.
从而,直线PH平分梯形OBCD的面积,即直线PH为所求直线l
设直线PH的表达式为y=kx+b且点P(5,3),
∴3=5k+b即b=3-5k,
∴y=kx+3-5k,
∵直线OD的表达式为y=3x,
∴
|
解之
|
∴点H的坐标为(x=
3−5k |
3−k |
9−15k |
3−k |
把x=2代入直线PH的解析式y=kx+3-5k,得y=3-k,
∴PH与线段AD的交点F(2,3-k),
∴0<3-k<6,
∴-3<k<3.
∴S△DHF=
1 |
2 |
3−5k |
3−k |
1 |
2 |
1 |
2 |
∴解得:k=-3+2
3 |
作业帮用户
2017-09-30
![]() ![]() |
看了 (1)如图1,点M是正方形A...的网友还看了以下:
如图,天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B点测得C点的仰角为6 2020-05-20 …
走什么样的路线才最合理某快递员骑自行车派送快递.A点为快递员所在地点.B点需要派送一票1小时内到达 2020-07-01 …
朋友之间亲密又有距离。对此,下列观点不正确的是()A.每个人都是独立的个体,应该给朋友一些空间B. 2020-07-20 …
三年的初中生活即将结束,你留心过你所用的语文课本是何种版本吗?如果没有留心,没关系,以后留意点。这一 2020-11-03 …
(1)如图,在△ABC中用直尺和圆规作AB边上的高CD(保留作图痕迹,不写作法).(2)图中的实线表 2020-11-06 …
阅读下面的材料,根据要求写一篇不少于700字的文章。成长路上,有彩虹,也有风雨。成功时,留一点清醒给 2020-11-21 …
你留心过你所用的语文课本是何种版本吗?如果没有留心,没关系,以后留意点。这一问记在心里,不需回答。下 2020-12-06 …
三年的初中生活即将结束,你留心过你所用的语文课本是何种版本吗?如果没有留心,没关系,以后留意点。这一 2020-12-06 …
三年的初中生活即将结束,你留心过你所用的语文课本是何种版本吗?如果没有留心,没关系,以后留意点.这一 2020-12-06 …
一条铁链AB长4.9m,系于使它竖直下垂.若让铁链自由下落,求整条铁链通过悬点A正下方24.5m处的 2021-02-02 …