早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求一题需要用数学归纳法证明的数列题

题目详情
求一题需要用数学归纳法证明的数列题
▼优质解答
答案和解析
最简单和常见的数学归纳法证明方法是证明当n属于所有自然数时一个表达式成,这种方法是由下面两步组成:
递推的基础: 证明当n = 1时表达式成立.
递推的依据: 证明如果当n = m时成立,那么当n = m + 1时同样成立.(递推的依据中的“如果”被定义为归纳假设. 不要把整个第二步称为归纳假设.)
这个方法的原理在于第一步证明起始值在表达式中是成立的,然后证明一个值到下一个值的证明过程是有效的.如果这两步都被证明了,那么任何一个值的证明都可以被包含在重复不断进行的过程中.或许想成多米诺效应更容易理解一些;如果你有一排很长的直立着的多米诺骨牌那么如果你可以确定:
数学归纳法有两个关键点需要牢记
1.证明当n为某一个值时,结论是成立的.
2.假定n=k时成立,证明n=k+1时,结论也是成立的.
举例:
求证:5个连续自然数的积能被120整除
答案:
1、当n=1时1*2*3*4*5=120,能被120整除,原命题成立
2、假设当n=k时原命题成立,则当n=k+1时
(k+1)(k+2)(k+3)(k+4)(k+5)
=k(k+1)(k+2)(k+3)(k+4)
+5(k+1)(k+2)(k+3)(k+4)
因为k(k+1)(k+2)(k+3)(k+4)是120的倍数
只需证5(k+1)(k+2)(k+3)(k+4)是120的倍数
即欲证(k+1)(k+2)(k+3)(k+4)是24的倍数
四个数中两奇两偶,一定有4的倍数,3的倍数,还有另一个偶数,所以一定能被4*2*3=24整除 .
即当n=k+1时原命题成立
所以,综合1、2、,原命题对任何自然数成立
又一例:
已知:a1=1/2,1+an=3an/3+an(n属于正整数),则an=
an=3/(n+5)
a1=1/2=3/6
a2=3/7,a3=3/8,a4=3/9,a5=3/10.
猜想:an=3/(n+5)
证明:当n=1时,a1=1/2=3/6
假设当n=k时成立,即:ak=3/(k+5)
则当n=k+1时有ak+1=3ak/(3+ak)
=[9/(k+5)]/[3+3/(k+5)]
=9/3(k+5+1)
=3/[(k+1)+5]
即当n=k+1时假设成立.
所以an=3/(n+5) (n为正整数)