早教吧作业答案频道 -->数学-->
已知数列8*1/1^2*3^2,8*2/3^2*5^2,……8*n/(2n-1)^2(2n+1)^2,若sn为该数列的前n项和,求Sn.数学归纳法证明
题目详情
已知数列8*1/1^2*3^2,8*2/3^2*5^2,……8*n/(2n-1)^2(2n+1)^2,若sn为该数列的前n项和,求Sn.数学归纳法证明
▼优质解答
答案和解析
8n/((2n-1)²(2n+1)²)
=((2n+1)²-(2n-1)²)/((2n-1)²(2n+1)²)
=1/(2n-1)²-1/(2n+1)²
所以
Sn= (8×1)/(1²×3²)+(8×2)/(3²×5²)+(8×3)/(5²×7²)...+ 8n/((2n-1)²(2n+1)²)
=1/1²-1/3²+1/3²-1/5²+1/5²-1/7²+...+1/(2n-1)²-1/(2n+1)²
=1-1/(2n+1)²
=(4n(n+1))/(2n+1)²
以上回答你满意么?
8n/((2n-1)²(2n+1)²)
=((2n+1)²-(2n-1)²)/((2n-1)²(2n+1)²)
=1/(2n-1)²-1/(2n+1)²
所以
Sn= (8×1)/(1²×3²)+(8×2)/(3²×5²)+(8×3)/(5²×7²)...+ 8n/((2n-1)²(2n+1)²)
=1/1²-1/3²+1/3²-1/5²+1/5²-1/7²+...+1/(2n-1)²-1/(2n+1)²
=1-1/(2n+1)²
=(4n(n+1))/(2n+1)²
以上回答你满意么?
看了 已知数列8*1/1^2*3^...的网友还看了以下: