早教吧作业答案频道 -->数学-->
0+(1-1)*1/2+(2-1)*2/2...+(n-1)n/2=?
题目详情
0+(1-1)*1/2+(2-1)*2/2...+(n-1)n/2=?
▼优质解答
答案和解析
答:
由于通项式是 (n-1)n/2,假设和的公式是:a * n^3 + b * n^2 + cn
当n=1时:
a + b + c = 0 ①
当n=2时:
a * 2^3 + b * 2^2 + c * 2 = (1-1)*1/2 + (2-1)*2/2
8a + 4b + 2c = 0 + 1
8a + 4b + 2c = 1 ②
当n=3时:
a * 3^3 + b * 3^2 + c * 3 = (1-1)*1/2 + (2-1)*2/2 + (3-1)*3/2
27a + 9b + 3c = 4 ③
解方三元一次程组:
a + b + c = 0 ①
8a + 4b + 2c = 1 ②
27a + 9b + 3c = 4 ③
===>
{a -> 1/6,b -> 0,c -> -(1/6)}
所以和的公式是:
1/6 n^3 - 1/6 n
= n(n²-1)/6
=(n-1)n(n+1)/6
(验证):
和是:0 + 1 + 3 + 6 + 10 + 15 ...
0*1*2/6 = 0 ---> 0
1*2*3/6 = 1 --->0 + 1
2*3*4/6 = 4 --->0 + 1 + 3
3*4*5/6 = 10 --->0 + 1 + 3 + 6
4*5*6/6 = 20 --->0 + 1 + 3 + 6 + 10
5*6*7/6 = 35 --->0 + 1 + 3 + 6 + 10 + 15
.
(完)
由于通项式是 (n-1)n/2,假设和的公式是:a * n^3 + b * n^2 + cn
当n=1时:
a + b + c = 0 ①
当n=2时:
a * 2^3 + b * 2^2 + c * 2 = (1-1)*1/2 + (2-1)*2/2
8a + 4b + 2c = 0 + 1
8a + 4b + 2c = 1 ②
当n=3时:
a * 3^3 + b * 3^2 + c * 3 = (1-1)*1/2 + (2-1)*2/2 + (3-1)*3/2
27a + 9b + 3c = 4 ③
解方三元一次程组:
a + b + c = 0 ①
8a + 4b + 2c = 1 ②
27a + 9b + 3c = 4 ③
===>
{a -> 1/6,b -> 0,c -> -(1/6)}
所以和的公式是:
1/6 n^3 - 1/6 n
= n(n²-1)/6
=(n-1)n(n+1)/6
(验证):
和是:0 + 1 + 3 + 6 + 10 + 15 ...
0*1*2/6 = 0 ---> 0
1*2*3/6 = 1 --->0 + 1
2*3*4/6 = 4 --->0 + 1 + 3
3*4*5/6 = 10 --->0 + 1 + 3 + 6
4*5*6/6 = 20 --->0 + 1 + 3 + 6 + 10
5*6*7/6 = 35 --->0 + 1 + 3 + 6 + 10 + 15
.
(完)
看了 0+(1-1)*1/2+(2...的网友还看了以下: