早教吧作业答案频道 -->数学-->
原例题解题过程:求微分方程y'+ytanx=secx的通解因为P(x)=tanx,Q(x)=secx于是利用公式y=[e^-∫P(x)dx]{∫Q(x)e^[∫P(x)dx]dx+C}得y=[e^-∫P(x)dx]{∫Q(x)e^[∫P(x)dx]dx+C}=(e^-∫tanxdx)[∫secxe^(∫tanxdx)dx+C]=[e^(lncosx)]
题目详情
原例题解题过程:
求微分方程y'+ytanx=secx的通解
因为P(x)=tanx,Q(x)=secx 于是利用公式y=[e^-∫P(x)dx]{∫Q(x)e^[∫P(x)dx]dx+C}得y=[e^-∫P(x)dx]{∫Q(x)e^[∫P(x)dx]dx+C}=(e^-∫tanxdx)[∫secxe^(∫tanxdx)dx+C]=[e^(lncosx)][∫secxe^(-lncosx)dx+C]=cosx[∫secxsecxdx+C]=cosx(tanx+C)=sinx+Ccosx
请问:式中lncosx为什么cosx两边不加绝对值变成|cosx|
(看书中例题没看懂的地方) 请网友帮助,
求微分方程y'+ytanx=secx的通解
因为P(x)=tanx,Q(x)=secx 于是利用公式y=[e^-∫P(x)dx]{∫Q(x)e^[∫P(x)dx]dx+C}得y=[e^-∫P(x)dx]{∫Q(x)e^[∫P(x)dx]dx+C}=(e^-∫tanxdx)[∫secxe^(∫tanxdx)dx+C]=[e^(lncosx)][∫secxe^(-lncosx)dx+C]=cosx[∫secxsecxdx+C]=cosx(tanx+C)=sinx+Ccosx
请问:式中lncosx为什么cosx两边不加绝对值变成|cosx|
(看书中例题没看懂的地方) 请网友帮助,
▼优质解答
答案和解析
lncosx中cosx两边理论上是要加绝对值,但是微积分的关键在于考察积分到底积不积的出来,至于正负号并不是微积分所追求的,你不加绝对值算出来,没人说你错;如果你想严密一点,就加个绝对值吧!
看了 原例题解题过程:求微分方程y...的网友还看了以下:
格林公式算曲线积分∫L(x^2-y)dx-(x+(siny)^2)dyL:y=√(2x-x^2)点 2020-06-10 …
∫e^(e^x+x)dx=?这样做对吗?∫e^(e^x+x)dx=∫e^(xlne+x)=∫e^( 2020-06-12 …
求方程xdy+dx=e^ydx的通解移位:dy/(1-e^y)+dx/x=0∫(1+(e^y/(1 2020-06-12 …
∫1/(e^x+1)dx为什么=-∫e^(-x)/[1+e^(-x)]dx为什么前面有-号,同乘e 2020-06-12 …
d/dx(e^y+xy-e)=e^ydy/dx+y+xdy/dx,这是教科书上的等式,对等式左边x 2020-07-19 …
原例题解题过程:求微分方程y'+ytanx=secx的通解因为P(x)=tanx,Q(x)=sec 2020-07-31 …
若关于x的一元二次方程a(x-x1)(x-x2)=0(a≠0且x1≠x2)与关于x的一元一次方程dx 2020-10-31 …
设z=z(x,y)由下列方程所确定试求dz(1)e^z-xyz=0那个像倒6的符号不会打我在这里用D 2020-11-07 …
一阶微分方程!一阶非齐次常微分方程y=e^[-∫(-1/x)dx][∫(1/lnx)e^∫(-1/x 2020-12-07 …
∫(0→π/2)(sinx)^ndx=多少?怎么来的?∫(0→π/2)(cosx)^ndx=多少?怎 2020-12-28 …