早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013•南昌)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0B.b2-

题目详情
(2013•南昌)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是(  )

A.a>0
B.b2-4ac≥0
C.x1<x0<x2
D.a(x0-x1)(x0-x2)<0
▼优质解答
答案和解析
A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;
B、∵x1<x2
∴△=b2-4ac>0,故本选项错误;
C、若a>0,则x1<x0<x2
若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;
D、若a>0,则x0-x1>0,x0-x2<0,
所以,(x0-x1)(x0-x2)<0,
∴a(x0-x1)(x0-x2)<0,
若a<0,则(x0-x1)与(x0-x2)同号,
∴a(x0-x1)(x0-x2)<0,
综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.
故选D.