早教吧作业答案频道 -->数学-->
一道数学题,关于双曲线和内切圆P是双曲线X^2/a^2-y^2/b^2=1左支上的一点,F1F2分别是左右两焦点,且焦距为2c,则三角形PF1F2的内切圆的横坐标为什么?
题目详情
一道数学题,关于双曲线和内切圆
P是双曲线X^2/a^2-y^2/b^2=1 左支上的一点,F1 F2 分别是左右两焦点,且焦距为2c,则三角形PF1F2 的内切圆的横坐标为什么?
P是双曲线X^2/a^2-y^2/b^2=1 左支上的一点,F1 F2 分别是左右两焦点,且焦距为2c,则三角形PF1F2 的内切圆的横坐标为什么?
▼优质解答
答案和解析
设△PF1F2的内切圆的圆心为O
内切圆切PF1于A点,PF2于B点,F1F2于C点
因为是内切圆
所以有OA⊥PF1,OB⊥PF2,OC⊥F1F2,且PA=PB,AF1=F1C,BF2=CF2
因为OC⊥F1F2,即X轴,只要求出C点的横坐标,就等于求出了O点的横坐标.
由双曲线的性质可知
PF1-PF2=-2a
∵PF1=PA+AF1,PF2=PB+BF2,∴PF1-PF2=(PA+AF1)-(PB+BF2)=AF1-BF2=CF1-CF2=-2a,
又∵CF1+CF2=2c,联立可得CF2=c+a,.
∵F2(c,0),∴C(-a,0).
∴O点横坐标就为-a
内切圆切PF1于A点,PF2于B点,F1F2于C点
因为是内切圆
所以有OA⊥PF1,OB⊥PF2,OC⊥F1F2,且PA=PB,AF1=F1C,BF2=CF2
因为OC⊥F1F2,即X轴,只要求出C点的横坐标,就等于求出了O点的横坐标.
由双曲线的性质可知
PF1-PF2=-2a
∵PF1=PA+AF1,PF2=PB+BF2,∴PF1-PF2=(PA+AF1)-(PB+BF2)=AF1-BF2=CF1-CF2=-2a,
又∵CF1+CF2=2c,联立可得CF2=c+a,.
∵F2(c,0),∴C(-a,0).
∴O点横坐标就为-a
看了 一道数学题,关于双曲线和内切...的网友还看了以下:
如图点F为双曲线C的左焦点,左准线l交x轴于点Q,点P是l上的一点|PQ|=|FQ|=1,且线段P 2020-04-08 …
双曲线kx2-y2=1,右焦点为F,斜率大于0的渐近线为l,l与右准线交于A,FA与左准线交于B, 2020-04-08 …
``麻烦给出详细的过程题1:点F为双曲线C的左焦点,左准线L交X轴于点Q,点P是L上的一点,已知| 2020-04-08 …
设双曲线C:的右焦点为F,右准线为l,设某条直线m交其左支、右支和右准线分别于P、Q、R,则的大小 2020-04-08 …
已知fx是一次函数,且满足f[f(x)]=x1.已知f(x)是一次函数,且满足f[f(x)]=x, 2020-06-11 …
设函数f(x)对一切实数x都满足f(1/2+x)=f(1/2-x),且方程f(x)=0有三个实根, 2020-07-16 …
已知y=f(x)是奇函数,且满足f(x+1)=f(x-1),当x∈(0,1)时,f(x)=log2 2020-07-19 …
已知双曲线C:x的平方-y的平方=1及直线L:y=kx-1.问题1)若直线L与C的左支有两个不同的 2020-07-22 …
双曲线x2-y2=1的左焦点为F,点P是双曲线左支上位于x轴上方的任一点,则直线PF的斜率的取值范围 2020-12-31 …
抛物线X^=8Y的焦点为F,准线为L,则过点F和M(8,8)且与准线L相切的圆的个数,怎么求直线Y= 2021-02-08 …