早教吧 育儿知识 作业答案 考试题库 百科 知识分享

解三角形题:求证三角形中r=4Rsin(A/2)sin(B/2)sin(C/2)其中r为内切圆半径,R为外接圆半径.要有详细过

题目详情
解三角形题:求证三角形中 r=4Rsin(A/2)sin(B/2)sin(C/2) 其中r为内切圆半径,R为外接圆半径.要有详细过
▼优质解答
答案和解析
nzy2013,
设ΔABC的三个顶角分别为A、B、C,内切圆圆心为O,外接圆圆心为P
由正弦定理可知,在ΔABC中有:
AB/sinC=2R.(1)
∵在RtΔOAE和RtΔOBE中分别有:
AE=OE×cot∠OAE=r×cot(A/2),
EB=OE×cot∠OBE=r×cot(B/2),
又∵AB=AE+EB
∴将各等量代入等式(1)得:
((r×cot(A/2))+( r×cot(B/2)))/sinC=2R
由三角函数的一系列公式,来化简上式:
r/R=2×sinC/(cot(A/2)+cot(B/2))
=2×(2×sin(C/2)×cos(C/2))/((cos(A/2)/sin(A/2))+(cos(B/2)/sin(B/2)))
=2×(2×sin(C/2)×cos(C/2) ×sin(A/2)×sin(B/2))/(sin(A/2)×cos(B/2)+cos(A/2)×sin(B/2))
=2×(2×sin(A/2)×sin(B/2)×sin(C/2)×cos(C/2))/sin((A+B)/2)
∵sin((A+B)/2)=sin((∏-C)/2)=sin((∏/2)-(C/2))=cos(C/2)
∴2×(2×sin(A/2)×sin(B/2)×sin(C/2)×cos(C/2))/sin((A+B)/2)
=2×(2×sin(A/2)×sin(B/2)×sin(C/2)×cos(C/2))/cos(C/2)
=4×sin(A/2)×sin(B/2)×sin(C/2)
所以r/R=4×sin(A/2)×sin(B/2)×sin(C/2)
即:r=4Rsin(A/2)sin(B/2)sin(C/2)
看了 解三角形题:求证三角形中r=...的网友还看了以下: