早教吧作业答案频道 -->其他-->
已知函数f(x)=lnx,g(x)=(x-a)2+(lnx-a)2.(Ⅰ)求函数f(x)在A(1,0)处的切线方程;(Ⅱ)若g′(x)在[1,+∞)上单调递增,求实数a的取值范围;(Ⅲ)证明:g(x)≥12.
题目详情
已知函数f(x)=lnx,g(x)=(x-a)2+(lnx-a)2.
(Ⅰ)求函数f(x)在A(1,0)处的切线方程;
(Ⅱ)若g′(x)在[1,+∞)上单调递增,求实数a的取值范围;
(Ⅲ)证明:g(x)≥
.
(Ⅰ)求函数f(x)在A(1,0)处的切线方程;
(Ⅱ)若g′(x)在[1,+∞)上单调递增,求实数a的取值范围;
(Ⅲ)证明:g(x)≥
| 1 |
| 2 |
▼优质解答
答案和解析
(Ⅰ)∵f(x)=lnx,
∴f′(x)=
,…(1分)
∴f′(1)=1,…(2分)
故切线方程为y=x-1;…(4分)
(Ⅱ)∵g(x)=(x-a)2+(lnx-a)2,
∴g′(x)=2(x-
+
-a),…(5分)
令F(x)=x-
+
-a,则y=F(x)在[1,+∞)上单调递增.
F′(x)=
,则当x≥1时,x2-lnx+a+1≥0恒成立,
即当x≥1时,a≥-x2+lnx-1恒成立.…(6分)
令G(x)=-x2+lnx-1,则当x≥1时,G′(x)=
<0,
故G(x)=-x2+lnx-1在[1,+∞)上单调递减,从而G(x)max=G(1)=-2,(7分)
故a≥-2.…(8分)
(Ⅲ)证明:g(x)=(x-a)2+(lnx-a)2=2a2-2(x+lnx)a+x2+ln2x,
令h(a)=2a2-2(x+lnx)a+x2+ln2x,则h(a)≥
.…(9分)
令Q(x)=x-lnx,则Q′(x)=
,显然Q(x)=在(0,1)上单调递减,在(1,+∞)上单调递增,…(10分)
则Q(x)min=Q(1)=1,…(11分)
则g(x)=h(a)≥
.…(12分)
∴f′(x)=
| 1 |
| x |
∴f′(1)=1,…(2分)
故切线方程为y=x-1;…(4分)
(Ⅱ)∵g(x)=(x-a)2+(lnx-a)2,
∴g′(x)=2(x-
| a |
| x |
| lnx |
| x |
令F(x)=x-
| a |
| x |
| lnx |
| x |
F′(x)=
| x2-lnx+a+1 |
| x2 |
即当x≥1时,a≥-x2+lnx-1恒成立.…(6分)
令G(x)=-x2+lnx-1,则当x≥1时,G′(x)=
| 1-2x2 |
| x |
故G(x)=-x2+lnx-1在[1,+∞)上单调递减,从而G(x)max=G(1)=-2,(7分)
故a≥-2.…(8分)
(Ⅲ)证明:g(x)=(x-a)2+(lnx-a)2=2a2-2(x+lnx)a+x2+ln2x,
令h(a)=2a2-2(x+lnx)a+x2+ln2x,则h(a)≥
| (x-lnx)2 |
| 2 |
令Q(x)=x-lnx,则Q′(x)=
| x-1 |
| x |
则Q(x)min=Q(1)=1,…(11分)
则g(x)=h(a)≥
| 1 |
| 2 |
看了 已知函数f(x)=lnx,g...的网友还看了以下:
设f(x)在x处有n阶导数,且f'(x0)=f''(x0)=…=f^(n-1)(x0)=0,f^( 2020-05-17 …
如果一元函数f(x0,y)在y0处连续,f(x,y0)在x0处连续,那么二元函数f(x,y)在点( 2020-05-21 …
设f(x)为偶函数,且在[0,+无穷大)内是增函数,又f(-3)=0,则x•f(x)<0的解集.已 2020-05-21 …
1若f(x)是定义在R上的以3为周期的偶函数,且f(2)=0,则方程f(x)=0在区间(0,6)内 2020-05-23 …
设f(x)是定义在R上的函数,且在(—∞,+∞)上是增函数,又F(x)=f(x)-f(-x),那么 2020-06-03 …
请教数学高手为我解答一个奇函数的问题!定义在R上的奇函数f(x)满足f(x+1)=-f(x),且在 2020-06-06 …
①定义在R上函数f(x)满足f(2)>f(1),则f(x)是R上的增函数;②定义在R上函数f(x) 2020-07-22 …
f(0)的2阶导数存在的条件?f(0)的2阶导数存在的条件是f(x),f(x)的一阶导数在x=O连 2020-07-23 …
设D是一有界闭域,函数f(x,y)在D上连续,在D内偏导数存在,且满足等式?f(x,y)?x+2? 2020-07-31 …
高数证明问题1.设函数f(x)在闭区间[0,A]上连续,且f(0)=0,如果f'(x)存在且为增函 2020-08-01 …