早教吧作业答案频道 -->数学-->
已知点M在椭圆x^2/a^2+y^2/b^2=1(a>b>0)上,以M为圆心的圆与x轴相已知点M在椭圆x^2/a^2+y^2/b^2=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点F.(1)若圆M于y轴相切,求椭圆的离心率(2)若圆M与
题目详情
已知点M在椭圆x^2/a^2+y^2/b^2=1(a>b>0)上,以M为圆心的圆与x轴相
已知点M在椭圆x^2/a^2+y^2/b^2=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点F.(1)若圆M于y轴相切,求椭圆的离心率(2)若圆M与y轴相交于A,B两点,且三角形ABM是边长为2的正三角形,求椭圆的方程.
已知点M在椭圆x^2/a^2+y^2/b^2=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点F.(1)若圆M于y轴相切,求椭圆的离心率(2)若圆M与y轴相交于A,B两点,且三角形ABM是边长为2的正三角形,求椭圆的方程.
▼优质解答
答案和解析
这题不难
(1)设椭圆左焦点为F1(-c,0),右焦点为F2(c,0).(不用原题的F了)连接F1M和F2M
由“圆与x轴相切于椭圆的右焦点F2”得MF2⊥x轴
由“圆M与y轴相切”易得M(c,c)
因为F1F2=2c,MF2=c
勾股得Mf1=√5c
所以2a=MF1+MF2=(√5+1)c
所以离心率e=c/a=√5-1
(2)因为三角形ABM是边长为2的正三角形,过定点M的三角形的高=√3
即c=√3
所以F1(-√3,0),F2(√3,0)
MA=MB=MF2=圆的半径=2
所以M(√3,2)
所以2a=MF1+MF2=6(距离公式)
所以b方=a方-c方=6
所以椭圆方程为x^2/9+y^2/6=1
(1)设椭圆左焦点为F1(-c,0),右焦点为F2(c,0).(不用原题的F了)连接F1M和F2M
由“圆与x轴相切于椭圆的右焦点F2”得MF2⊥x轴
由“圆M与y轴相切”易得M(c,c)
因为F1F2=2c,MF2=c
勾股得Mf1=√5c
所以2a=MF1+MF2=(√5+1)c
所以离心率e=c/a=√5-1
(2)因为三角形ABM是边长为2的正三角形,过定点M的三角形的高=√3
即c=√3
所以F1(-√3,0),F2(√3,0)
MA=MB=MF2=圆的半径=2
所以M(√3,2)
所以2a=MF1+MF2=6(距离公式)
所以b方=a方-c方=6
所以椭圆方程为x^2/9+y^2/6=1
看了 已知点M在椭圆x^2/a^2...的网友还看了以下:
已知双曲线的两个焦点是椭圆x^2/100+y^2/64=1的两个顶点,双曲线的两条准线经过椭圆的已 2020-04-08 …
已知抛物线的方程为y^2=2px(p>0)F为它的焦点.直线2x-y=0截抛物线所得弦长为根号5, 2020-04-27 …
已知椭圆C1X²/a²+y²/b²=1的左右焦点分别为F1F2.已知椭圆X²/a²+y²/b²=1 2020-05-23 …
已知|AB|是过抛物线2x^2=y的焦点的弦,若|AB|=4,则AB中点的纵坐标是A.1B.2C. 2020-06-05 …
已知椭圆x^2/a^2加y^2/b^2=1(a>b>0)的左右焦点分别为F1,F2其右准线L与x轴 2020-06-30 …
已知抛物线的焦点F与双曲线的一个焦点相同,且F到双曲线的右顶点的距离等于1,已知抛物线y^2=8x 2020-07-13 …
已知椭圆C:x²/y²+y²/b²=1(a>b>0)的离心率为√2/2,左右焦点分别为F1,F2, 2020-07-31 …
已知圆C:x^2+(y-1)^2=5,直线L:mx-y+1-m=0(1)求证:m∈R时,直线L与圆C 2020-11-01 …
请问1=0?是怎样推理出来的?在初中时曾经有一个课外补充知识,通过x=y的已知,通过错误推理,然后得 2020-12-23 …
已知点F1、F2分别为双曲线(x^2)/(a^2)-(y^2)/(2)=1(a>0)的左右焦点,过F 2020-12-31 …