早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,∠BAC=60°,求DE的长.

题目详情
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.

(1)求证:AB=AC;
(2)求证:DE为⊙O的切线;
(3)若⊙O的半径为5,∠BAC=60°,求DE的长.
▼优质解答
答案和解析
(1)证明:∵AB是⊙O的直径,
∴∠ADB=90°;
∵BD=CD,
∴AD是BC的垂直平分线.
∴AB=AC.(3分)
(2)证明:连接OD,
∵点O、D分别是AB、BC的中点,
∴OD∥AC.
∵DE⊥AC,
∴OD⊥DE.
∴DE为⊙O的切线.(6分)
(3)由AB=AC,∠BAC=60°知△ABC是等边三角形,
∵⊙O的半径为5,
∴AB=BC=10,CD=
1
2
BC=5.
∵∠C=60°,
∴DE=CD•sin60°=
5
3
2
.(9分)