早教吧作业答案频道 -->数学-->
在直角三角形ABC中,角ABC=90度,以斜边AB为边向外作正方形ABDE,且正方向的对角线交于点O,连接OC,已知OC=6乘根号2,则另一条直角边BC的长为多少?
题目详情
在直角三角形ABC中,角ABC=90度,以斜边AB为边向外作正方形ABDE,且正方向的对角线交于点O,连接OC,已知
OC=6乘根号2,则另一条直角边BC的长为多少?
OC=6乘根号2,则另一条直角边BC的长为多少?
▼优质解答
答案和解析
如图1所示,过O作OF⊥BC,过A作AM⊥OF,
∵四边形ABDE为正方形,
∴∠AOB=90°,OA=OB,
∴∠AOM+∠BOF=90°,
又∠AMO=90°,∴∠AOM+∠OAM=90°,
∴∠BOF=∠OAM,
在△AOM和△BOF中,
∠AMO=∠OFB=90°∠OAM=∠BOFOA=OB,
∴△AOM≌△BOF(AAS),
∴AM=OF,OM=FB,
又∠ACB=∠AMF=∠CFM=90°,
∴四边形ACFM为矩形,
∴AM=CF,AC=MF=5,
∴OF=CF,
∴△OCF为等腰直角三角形,
∵OC=6根号2,
∴根据勾股定理得:CF2+OF2=OC2,
解得:CF=OF=6,
∴FB=OM=OF-FM=6-5=1,
则BC=CF+BF=6+1=7.
故答案为:7.
∵四边形ABDE为正方形,
∴∠AOB=90°,OA=OB,
∴∠AOM+∠BOF=90°,
又∠AMO=90°,∴∠AOM+∠OAM=90°,
∴∠BOF=∠OAM,
在△AOM和△BOF中,
∠AMO=∠OFB=90°∠OAM=∠BOFOA=OB,
∴△AOM≌△BOF(AAS),
∴AM=OF,OM=FB,
又∠ACB=∠AMF=∠CFM=90°,
∴四边形ACFM为矩形,
∴AM=CF,AC=MF=5,
∴OF=CF,
∴△OCF为等腰直角三角形,
∵OC=6根号2,
∴根据勾股定理得:CF2+OF2=OC2,
解得:CF=OF=6,
∴FB=OM=OF-FM=6-5=1,
则BC=CF+BF=6+1=7.
故答案为:7.
看了 在直角三角形ABC中,角AB...的网友还看了以下:
AB为圆O的直径点C为圆O上一点AD和过点C的切线互相垂直垂足为点D过点C作CE垂直AB垂足为点E直 2020-03-30 …
如图,点P是直线y=12x+2与双曲线y=kx在第一象限内的一个交点,直线y=12x+2与x轴、y 2020-05-21 …
有一个大圆,里面有2个半圆和1个圆.圆A直径9厘有一个大圆,里面有2个半圆和1个圆.半圆A(半圆) 2020-06-19 …
已知直线l:kx+y﹣2=0(k∈R)是圆C:x2+y2﹣6x+2y+9=0的对称轴,过点A(0, 2020-07-13 …
过点P(-2,-3)作圆C:(x-4)^2+(y-2)^2=9的两条切线,切带内分别为AB(1)经 2020-07-26 …
已知点P(-2,-3),圆C:(x-4)2+(y-2)2=9,过P点作圆C的两条切线,切点分别为A 2020-07-31 …
点P是直线y=0.5x+2与双曲线y=k/x在第一象限的一个交点,直线y=0.5x+2与x轴、y轴 2020-08-02 …
设直角边为xy则x+y+15=36x^2+y^2=15^2解得x=9设直角边为xy则x+y+15=3 2020-11-01 …
1、如图,直线a和直线c相交成直角,所以直线a和直线c互相垂直,记作a⊥c;相互垂直的直线还有直线b 2020-11-02 …
直升飞机能够在空中盘旋,是由于直升飞机在空中受到()A空气的浮力B气压的作用C直升飞机自己的动力D空 2020-12-24 …