早教吧作业答案频道 -->数学-->
在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成的角为60度,点E为PC的终点.1.求以四边形ABCD的外接圆为地面,以点P为顶点的圆锥的体积2.求以面直线PA与BE所成角的值3.求二面角C—PB—D的正弦值
题目详情
在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成的角为60度,点E为PC的终点.
1.求以四边形ABCD的外接圆为地面,以点P为顶点的圆锥的体积
2.求以面直线PA与BE所成角的值
3.求二面角C—PB—D的正弦值
1.求以四边形ABCD的外接圆为地面,以点P为顶点的圆锥的体积
2.求以面直线PA与BE所成角的值
3.求二面角C—PB—D的正弦值
▼优质解答
答案和解析
1) 设正方形ABCD的中心为O.则PO垂直于底面,角PAO就是直线PA与底面的角,所以角POA=60度.且三角形PAC为边长为2 的正三角形.AC=2就是圆锥的直径.圆锥的高PO=√3,
圆锥的体积=1/3×π×r²×h=1/3×π×1²×√3=√3·π/3.
2) 连结EO,则EO∥PA,EO=½PA=1,据异面直线所成的角的定义,可知∠BEO就是所求.
在三角形BEO 中,BO=AO=½PA=1,EO=1,注意到BO⊥AO,且BO⊥PO,∴BO垂直于
这两条相交直线所确定的平面PAO,所以OE就是BE在此平面上的射影,由以上的数据,可知
角BEO=45度,所以异面直线PA与BE所成的角为45度.
3) 引OF垂直于PB交PB于F,连CF,由于CO垂直于平面PBD,所以角CFO就是所求的二面角的平面角.在三角形BOP中易得OF=√3/2,∵CO=1,所以在直角△COF中用勾股定理易得
CF=√7/2,∴sin∠CFO=CO/CF=2√7/7,答:正弦值为2√7/7.
圆锥的体积=1/3×π×r²×h=1/3×π×1²×√3=√3·π/3.
2) 连结EO,则EO∥PA,EO=½PA=1,据异面直线所成的角的定义,可知∠BEO就是所求.
在三角形BEO 中,BO=AO=½PA=1,EO=1,注意到BO⊥AO,且BO⊥PO,∴BO垂直于
这两条相交直线所确定的平面PAO,所以OE就是BE在此平面上的射影,由以上的数据,可知
角BEO=45度,所以异面直线PA与BE所成的角为45度.
3) 引OF垂直于PB交PB于F,连CF,由于CO垂直于平面PBD,所以角CFO就是所求的二面角的平面角.在三角形BOP中易得OF=√3/2,∵CO=1,所以在直角△COF中用勾股定理易得
CF=√7/2,∴sin∠CFO=CO/CF=2√7/7,答:正弦值为2√7/7.
看了 在正四棱锥P-ABCD中,P...的网友还看了以下:
在循环双链表的p所指节点之后插入s所直接点操作A,p->next=s;s->prior=p;p->n 2020-03-31 …
计算题(P/A,10%,4)=3.1699(P/F,10%,1)=0.9091(P/A,10%,5 2020-04-07 …
如果二次函数y=-X2+2x+3的图象顶点为点P,点O是坐标原点,求三角形OPN的面积?由(1)得 2020-05-16 …
1.比较2∧100与3∧75的大小2.以知3∧x+1=15∧2x-3,求x的值3.下列计算正确的是 2020-06-06 …
某商品供给量Q对价格P的函数关系为Q=Q(P)=a+b*c的p次方(c≠1)已知当P=2时,Q=3 2020-06-07 …
正三棱锥的高为什么在底面高的2/3的位置?一个正三棱锥,已知底面变长和侧棱长,求体积的时候.为什么 2020-06-16 …
在大气中,将一容积为0.50m^3的一端封闭一端开口的空气体积为0.04m^3.设大气的压强与10 2020-07-06 …
一个非空集合中的各个元素之和是3的倍数,则称该集合为“好集”.记集合{1,2,3,…,3n}的子集 2020-08-01 …
下列说法错误的是()A.命题“若x2-4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2-4 2020-08-01 …
如果实数abc满足|a-1|+〔b+3)的二次方+根号3c-1=0求abc的125次方除以九次方乘以 2020-10-30 …