早教吧作业答案频道 -->数学-->
已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.(1)若B中每一元素都有原象,这样不同的f有多少个?(2)若B中的元素0必无原象,这样的f有多少个?(3)若f满足f(a1)+f(a2
题目详情
已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.
(1)若B中每一元素都有原象,这样不同的f有多少个?
(2)若B中的元素0必无原象,这样的f有多少个?
(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?
(1)若B中每一元素都有原象,这样不同的f有多少个?
(2)若B中的元素0必无原象,这样的f有多少个?
(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?
▼优质解答
答案和解析
(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有4×3×2×1=24(个).
(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法.所以不同的f共有34=81(个).
(3)分为如下四类:
第一类,A中每一元素都与1对应,有1种方法;
第二类,A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有12种方法;
第三类,A中有两个元素对应2,另两个元素对应0,有6种方法;
第四类,A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有12种方法.
所以不同的f共有1+12+6+12=31(个).
(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法.所以不同的f共有34=81(个).
(3)分为如下四类:
第一类,A中每一元素都与1对应,有1种方法;
第二类,A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有12种方法;
第三类,A中有两个元素对应2,另两个元素对应0,有6种方法;
第四类,A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有12种方法.
所以不同的f共有1+12+6+12=31(个).
看了 已知集合A={a1,a2,a...的网友还看了以下:
一道有关微积分中值定理的题目已知函数f(x)在区间【0,1】上连续,在(0,1)内可导,且f(0) 2020-05-16 …
数学反函数的问题!急!函数F(X)恒过(0,-1)则F(2X-1)的反函数必过什么这个我有点乱(一 2020-06-06 …
一道中值定理的题设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1 2020-07-13 …
设f(x)在0,1上满足f''(x)>0,则必有A.f'(1)>f'(0)>f(1)-f(0)B. 2020-07-26 …
一道简单的高数题.设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0 2020-08-02 …
利用Roll定理构造函数设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1 2020-11-02 …
设函数f(x)在x=0的某领域内三阶可导,limx→0f′(x)1−cosx=-12,则()A.f( 2020-11-03 …
设函数y=f(x)在(0,+∞)内有界且可导,为什么不选答案A:limx→+∞f(x)=0时,必有l 2020-11-03 …
在极坐标系中,曲线C的方程为F(ρ,θ)=0,则F(ρ0,θ0)=0是点P(ρ0,θ0)在曲线C上的 2020-12-07 …
已知函数f(x)=x^2+x+c,若f(0)>0,f(p)<0,则必有?1.f(p+1)>02.f( 2020-12-08 …