早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若函数g(x)=log3(ax2+2x-1)(log以3为底~)有最大值1,求实数a的值.我的答案上说因为是最大值,直接给了a小于0的情况.为什么不能是“a大于0,然后作为真数x有一个取值范围,使得ax2+2x-1有最大值等于3

题目详情
若函数g(x)=log3(ax2+2x-1)(log以3为底~)有最大值1,求实数a的值.
我的答案上说因为是最大值,直接给了a小于0的情况.
为什么不能是“a大于0,然后作为真数x有一个取值范围,使得ax2+2x-1有最大值等于3”呢?
▼优质解答
答案和解析
正确答案为
1、如果a=0
则x∈R时,(ax2+2x-1)∈R,无最大值最小值之说,
2、a>0,二次函数开口向上,则有最小值,最大值是正无穷(其实无最大值,只是值域)
3、a<0,二次函数开口向下,有最大值,最小值是负无穷
还要保证其0<顶点(是其最大值的纵坐标)≤3
ax2+2x-1=a[x+1/a]²-1-1/a
最大值为-1-1/a
解出-1
作业帮用户 2017-10-10