早教吧作业答案频道 -->其他-->
请阅读下列材料:已知:如图1在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45度.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转9
题目详情
请阅读下列材料:
已知:如图1在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45度.探究线段BD、DE、EC三条线段之间的数量关系.
小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图2,其它
条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.
已知:如图1在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45度.探究线段BD、DE、EC三条线段之间的数量关系.
小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图2,其它

▼优质解答
答案和解析
(1)猜想:DE2=BD2+EC2,
证明:根据△AEC绕点A顺时针旋转90°得到△ABE′,
∴△AEC≌△ABE′,
∴BE′=EC,AE′=AE,
∠C=∠ABE′,∠EAC=∠E′AB,
在Rt△ABC中,
∵AB=AC,
∴∠ABC=∠ACB=45°,
∴∠ABC+∠ABE′=90°,
即∠E′BD=90°,
∴E′B2+BD2=E′D2,
又∵∠DAE=45°,
∴∠BAD+∠EAC=45°,
∴∠E′AB+∠BAD=45°,
即∠E′AD=45°,
∴△AE′D≌△AED,
∴DE=DE′,
∴DE2=BD2+EC2.
(2)结论:关系式DE2=BD2+EC2仍然成立.
证明:作∠FAD=∠BAD,且截取AF=AB,连接DF,
连接FE,
∴△AFD≌△ABD,
∴AF=AB,FD=DB,
∠FAD=∠BAD,∠AFD=∠ABD,
又∵AB=AC,
∴AF=AC,
∵∠FAE=∠FAD+∠DAE=∠FAD+45°,
∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,
∴∠FAE=∠EAC,
又∵AE=AE,
∴△AFE≌△ACE,
∴FE=EC,∠AFE=∠ACE=45°,
∠AFD=∠ABD=180°-∠ABC=135°,
∴∠DFE=∠AFD-∠AFE=135°-45°=90°,
∴在Rt△DFE中,
DF2+FE2=DE2,
即DE2=BD2+EC2.

证明:根据△AEC绕点A顺时针旋转90°得到△ABE′,
∴△AEC≌△ABE′,
∴BE′=EC,AE′=AE,
∠C=∠ABE′,∠EAC=∠E′AB,
在Rt△ABC中,
∵AB=AC,
∴∠ABC=∠ACB=45°,
∴∠ABC+∠ABE′=90°,
即∠E′BD=90°,
∴E′B2+BD2=E′D2,
又∵∠DAE=45°,
∴∠BAD+∠EAC=45°,
∴∠E′AB+∠BAD=45°,
即∠E′AD=45°,
∴△AE′D≌△AED,
∴DE=DE′,
∴DE2=BD2+EC2.
(2)结论:关系式DE2=BD2+EC2仍然成立.
证明:作∠FAD=∠BAD,且截取AF=AB,连接DF,

∴△AFD≌△ABD,
∴AF=AB,FD=DB,
∠FAD=∠BAD,∠AFD=∠ABD,
又∵AB=AC,
∴AF=AC,
∵∠FAE=∠FAD+∠DAE=∠FAD+45°,
∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,
∴∠FAE=∠EAC,
又∵AE=AE,
∴△AFE≌△ACE,
∴FE=EC,∠AFE=∠ACE=45°,
∠AFD=∠ABD=180°-∠ABC=135°,
∴∠DFE=∠AFD-∠AFE=135°-45°=90°,
∴在Rt△DFE中,
DF2+FE2=DE2,
即DE2=BD2+EC2.
看了 请阅读下列材料:已知:如图1...的网友还看了以下:
初三二次根式与一元二次方程问题如图,将边长为3+√3的等边△ABC折叠,折痕为DE,点B与点F重合 2020-05-15 …
等边三角形ABC在平面直角坐标系中,点B,A分别在X轴的正负半轴上,点O恰好在AB的中点上,点C在 2020-05-16 …
已知点A(2a—b,a+3b)到y轴的距离和到原点的距离都是7,求点B(a²-b ,b²-a)到x 2020-05-16 …
已知赋值语句a:=(b-c)*(d-e),它的后缀式是(29)。A.abc-de-*:=B.:=a* 2020-05-26 …
椭圆求证问题已知椭圆x²/a²+y²/b²=1短轴的两端点为点A、点B.(a>b>0)P为椭圆上不 2020-07-07 …
在平面直角坐标系中,已知点a(a+b.2-a)与点b(a-5.b-2a)关于y轴对称.(1)试确点 2020-07-30 …
辅助角公式对于acosx+bsinx型函数,我们可以如此变形acosx+bsinx=√(a²+b² 2020-08-02 …
如图所示,竖直绝缘墙壁上Q处有一个固定的质点A,在Q的上方P点用丝线悬挂着另一个质点B.A、B两质点 2020-12-05 …
如图所示,金属棒ab长L,在磁感应强度为B的匀强磁场中以角速度ω绕棒上的O点逆时针运动,已知O距a为 2020-12-24 …
已知如图,直线AB:y=-x+8与x轴,y轴分别交与点B,A,过点B作直线AB的垂线交y轴与点D已知 2021-01-11 …