认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12∠A,理由如下:∵BO和C
认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.
探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+∠A,理由如下:
∵BO和CO分别是∠ABC和∠ACB的角平分线,
∴∠1=∠ABC,∠2=∠ACB,
∴∠1+∠2=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A,
∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A.
(1)探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
(2)探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)
(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BO和CO的交点,则∠BOC与∠A+∠D有怎样的关系?(直接写出结论)

答案和解析
(1)探究2结论:∠BOC=
∠A.
理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,
∴∠OBC=∠ABC,∠OCD=∠ACD,
又∵∠ACD是△ABC的一个外角,
∴∠ACD=∠A+∠ABC,
∴∠OCD=(∠A+∠ABC)=∠A+∠ABC=∠A+∠OBC,
又∵∠OCD是△BOC的一个外角,
∴∠BOC=∠OCD-∠OBC=∠A+∠OBC-∠OBC=∠A;
(2)探究3:结论∠BOC=90°-∠A.
根据三角形的外角性质,∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,
∵O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,
∴∠OBC=∠DBC,∠OCB=∠BCE,
∴∠OBC+∠OCB=(∠DBC+∠BCE)=(∠A+∠ACB+∠A+∠ABC),
∵∠A+∠ACB+∠ABC=180°,
∴∠OBC+∠OCB=90°+∠A,
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-(90°+∠A)=90°-∠A;
(3)拓展:结论∠BOC=(∠A+∠D).
在四边形ABCD中,∠ABC+∠BCD=(360°-∠A-∠D),
∵O是∠ABC与∠DCB的平分线BO和CO的交点,
∴∠OBC=∠ABC,∠OCB=∠BCD,
∴∠OBC+∠OCB=(∠ABC+∠BCD)=(360°-∠A-∠D),
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-(360°-∠A-∠D)=(∠A+∠D),
即∠BOC=(∠A+∠D).
关于sp2sp3杂化的问题(一)比如NO2-分子中心N应该是6电子采取sp2杂化那应该是(1)N给每 2020-03-30 …
初三几何证明不要敷衍我AB是圆O直径,BC切圆O于B,OC平行于弦AD,连CD,过D做DE垂直AB 2020-05-15 …
AB是圆O直径,BC切圆O于B,OC平行于弦AD,连CD,过D做DE垂直AB于E,交AC于P第1问 2020-05-15 …
如图,平行四边形ABCD的两条对角线AC与BD相交于点O,AD=根号10,AO=3,BO=1. 问 2020-05-16 …
在二维数组M[0...n,0...m]中,访问某个元素的平均时间复杂度为______。A.O(1)B 2020-05-23 …
在二维数组M[0…n,0…m]中,访问某个元素的平均时间复杂度为______。A.O(1)B.O(n 2020-05-24 …
椭圆a的平方分之X的平方+b的平方分之Y的平方=1(a>b>0)与直线X+Y=1交于P,Q两点,且 2020-06-03 …
设曲线y=ax^2(x>=0,常数a>0)与曲线y=1-x^2交于点A,过坐标原点O和点A的直线设 2020-06-14 …
如果向量a=(1,0,1),b=(O,1,1)分别平行于平面c与d,且都与这两个平面的交线L垂直, 2020-06-27 …
以知A={x|x平方+(a-1)-a>o},B={x|(x+a)(x+b)>0},其中a≠b,M= 2020-07-30 …