早教吧作业答案频道 -->数学-->
二次函数图象的顶点在原点O,经过点A(1,14);点F(0,1)在y轴上.直线y=-1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=-1交于点M
题目详情
二次函数图象的顶点在原点O,经过点A(1,
);点F(0,1)在y轴上.直线y=-1与y轴交于点H.

(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=-1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等边三角形时,求P点的坐标.
1 |
4 |

(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=-1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等边三角形时,求P点的坐标.
▼优质解答
答案和解析
(1)∵二次函数图象的顶点在原点O,
∴设二次函数的解析式为y=ax2,
将点A(1,
)代入y=ax2得:a=
,
∴二次函数的解析式为y=
x2;
(2)证明:∵点P在抛物线y=
x2上,
∴可设点P的坐标为(x,
x2),
过点P作PB⊥y轴于点B,则BF=
x2-1,PB=x,
∴Rt△BPF中,
PF=
=
x2+1,
∵PM⊥直线y=-1,
∴PM=
x2+1,
∴PF=PM,
∴∠PFM=∠PMF,
又∵PM∥y轴,
∴∠MFH=∠PMF,
∴∠PFM=∠MFH,
∴FM平分∠OFP;
(3)当△FPM是等边三角形时,∠PMF=60°,
∴∠FMH=30°,
在Rt△MFH中,MF=2FH=2×2=4,
∵PF=PM=FM,
∴
x2+1=4,
解得:x=±2
,
∴
x2=
×12=3,
∴满足条件的点P的坐标为(2
,3)或(-2
,3).
∴设二次函数的解析式为y=ax2,
将点A(1,
1 |
4 |
1 |
4 |
∴二次函数的解析式为y=
1 |
4 |

1 |
4 |
∴可设点P的坐标为(x,
1 |
4 |
过点P作PB⊥y轴于点B,则BF=
1 |
4 |
∴Rt△BPF中,
PF=
(
|
1 |
4 |
∵PM⊥直线y=-1,
∴PM=
1 |
4 |
∴PF=PM,
∴∠PFM=∠PMF,
又∵PM∥y轴,
∴∠MFH=∠PMF,
∴∠PFM=∠MFH,
∴FM平分∠OFP;
(3)当△FPM是等边三角形时,∠PMF=60°,
∴∠FMH=30°,
在Rt△MFH中,MF=2FH=2×2=4,
∵PF=PM=FM,
∴
1 |
4 |
解得:x=±2
3 |
∴
1 |
4 |
1 |
4 |
∴满足条件的点P的坐标为(2
3 |
3 |
看了 二次函数图象的顶点在原点O,...的网友还看了以下:
已知抛物线Y=aX2+bx+c经过点A(0,3)B(1,0) C(5,0)三点 1.求抛物线解析式 2020-05-15 …
已知抛物线y=ax^2+bx+c(a≠0)顶点(1,1)且过原点O.过抛物线上一点P(x,y)向知 2020-05-16 …
二填空题:(1)过点(2,-3)且与直线2x+y-3=0垂直的直线方程是.(2)随机掷一骰子,则所 2020-05-16 …
已知在直角坐标系8,二(0,4)、B(八,0).把线段二B绕点B顺时针旋转90°,得到线段B0,过 2020-05-17 …
已知椭圆C:x^2/a^2+y^2/b^2(a>b>0)过点(1,3/2)且椭圆上的点到焦点的最小 2020-06-06 …
已知椭圆C:x2/a2+y2/b2=1(a>b>0)过点(1,2/3)且历心率e=1/2求椭圆方程 2020-06-15 …
(2004年河北)如下图所示,质量不计的光滑木板AB长1.6m,可绕固定点O转动,离O点0.4m的 2020-07-04 …
求曲线x^2+y^2+z^2=6,x+y+z=0在点(1,-2,1)处的切线及平面方程网上我看到有人 2020-10-31 …
cadli怎么看对正=上,比例=1.00,样式=STANDARD顶点0:X=1104777Y=502 2020-11-07 …
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)过点(1,3/2),且离心率e=1/2( 2020-11-27 …