早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求一道高数题曲线X=In(1+t^2),y=arctant,z=t^3在点(In2,-兀/4,-1)出的一个切向量与ox轴正向夹角为锐角,则此向量与oy轴正向夹角的余弦值是()负1除以根号下41

题目详情
求一道高数题 曲线X=In(1+t^2),y=arctant,z=t^3 在点(In2,-兀/4,-1)出的一个切向量与ox轴正向夹角为锐角
,则此向量与oy轴正向夹角的余弦值是() 负1除以根号下41
▼优质解答
答案和解析
X=In(1+t^2),y=arctant,z=t^3
在点(In2,-兀/4,-1)处:t=-1
x'(-1)=-1,y'(-1)=1/2 z'(-1)=3
切向量为:(-1,1/2,3),模为√(41/4)
oy轴正向向量:(0,1,0) 模为1
cosa=(1/2)/√(41/4)=1/√41