早教吧作业答案频道 -->数学-->
计算人数的问题有记载说韩信统率大军,在册兵员26641人,部队集合时,按1~3,5,7报数,每次报数的余数依次为1,3,4.现在知道韩军缺员人数不到100人,求韩军实到的兵员人数和缺员人数.χ=88+105t,t∈Z2
题目详情
计算人数的问题
有记载说韩信统率大军,在册兵员26641人,部队集合时,按1~3,5,7报数,每次报数的余数依次为1,3,4.现在知道韩军缺员人数不到100人,求韩军实到的兵员人数和缺员人数.
χ=88+105t,t∈Z
26641-100 < χ ≤ 26641
有记载说韩信统率大军,在册兵员26641人,部队集合时,按1~3,5,7报数,每次报数的余数依次为1,3,4.现在知道韩军缺员人数不到100人,求韩军实到的兵员人数和缺员人数.
χ=88+105t,t∈Z
26641-100 < χ ≤ 26641
▼优质解答
答案和解析
这个题目是要求出一个正数,使之用3除余2,用5除余3,用7除余4,而且希望所求出的数尽可能地小.
如果一位同学从来没有接触过这类问题,也能利用试验加分析的办法一步一步地增加条件推出答案.
例如我们从用3除余2这个条件开始.满足这个条件的数是3n+2,其中n是非负整数.
要使3n+2还能满足用5除余3的条件,可以把n分别用1,2,3,…代入来试.当n=1时,3n+2=5,5除以5不用余3,不合题意;当n=2时,3n+2=8,8除以5正好余3,可见8这个数同时满足用3除余2和用5除余3这两个条件.
最后一个条件是用7除余4.8不满足这个条件.我们要在8的基础上得到一个数,使之同时满足三个条件.
为此,我们想到,可以使新数等于8与3和5的一个倍数的和.因为8加上3与5的任何整数倍所得之和除以3仍然余2,除以5仍然余3.于是我们让新数为8+15m,分别把m=1,2,…代进去试验.当试到m=3时,得到8+15m=53,53除以7恰好余4,因而53合乎题目要求.
我国古代学者早就研究过这个问题.例如我国明朝数学家程大位在他著的《算法统宗》(1593年)中就用四句很通俗的口诀暗示了此题的解法:
三人同行七十稀,
五树梅花甘一枝,
七子团圆正半月,
除百零五便得知.
"正半月"暗指15."除百零五"的原意是,当所得的数比105大时,就105、105地往下减,使之小于105;这相当于用105去除,求出余数.
这四句口诀暗示的意思是:当除数分别是3、5、7时,用70乘以用3除的余数,用21乘以用5除的余数,用15乘以用7除的余数,然后把这三个乘积相加.加得的结果如果比105大,就除以105,所得的余数就是满足题目要求的最小正整数解.
按这四句口诀暗示的方法计算韩信点的这队士兵的人数可得:
70×2+21×3+15×4=263,
263=2×105+53,
所以,这队士兵至少有53人.
在这种方法里,我们看到:70、21、15这三个数很重要,稍加研究,可以发现它们的特点是:
70是5与7的倍数,而用3除余1;
21是3与7的倍数,而用5除余1;
15是3与5的倍数,而用7除余1.
因而
70×2是5与7的倍数,用3除余2;
21×3是3与7的倍数,用5除余3;
15×4是3与5的倍数,用7除余4.
如果一个数除以a余数为b,那么给这个数加上a的一个倍数以后再除以a,余数仍然是b.所以,把70×2、21×3与15×4都加起来所得的结果能同时满足"用3除余2、用5除余3、用7除余4"的要求.一般地,
70m+21n+15k (1≤m<3,1≤n<5,1≤k<7)
如果一位同学从来没有接触过这类问题,也能利用试验加分析的办法一步一步地增加条件推出答案.
例如我们从用3除余2这个条件开始.满足这个条件的数是3n+2,其中n是非负整数.
要使3n+2还能满足用5除余3的条件,可以把n分别用1,2,3,…代入来试.当n=1时,3n+2=5,5除以5不用余3,不合题意;当n=2时,3n+2=8,8除以5正好余3,可见8这个数同时满足用3除余2和用5除余3这两个条件.
最后一个条件是用7除余4.8不满足这个条件.我们要在8的基础上得到一个数,使之同时满足三个条件.
为此,我们想到,可以使新数等于8与3和5的一个倍数的和.因为8加上3与5的任何整数倍所得之和除以3仍然余2,除以5仍然余3.于是我们让新数为8+15m,分别把m=1,2,…代进去试验.当试到m=3时,得到8+15m=53,53除以7恰好余4,因而53合乎题目要求.
我国古代学者早就研究过这个问题.例如我国明朝数学家程大位在他著的《算法统宗》(1593年)中就用四句很通俗的口诀暗示了此题的解法:
三人同行七十稀,
五树梅花甘一枝,
七子团圆正半月,
除百零五便得知.
"正半月"暗指15."除百零五"的原意是,当所得的数比105大时,就105、105地往下减,使之小于105;这相当于用105去除,求出余数.
这四句口诀暗示的意思是:当除数分别是3、5、7时,用70乘以用3除的余数,用21乘以用5除的余数,用15乘以用7除的余数,然后把这三个乘积相加.加得的结果如果比105大,就除以105,所得的余数就是满足题目要求的最小正整数解.
按这四句口诀暗示的方法计算韩信点的这队士兵的人数可得:
70×2+21×3+15×4=263,
263=2×105+53,
所以,这队士兵至少有53人.
在这种方法里,我们看到:70、21、15这三个数很重要,稍加研究,可以发现它们的特点是:
70是5与7的倍数,而用3除余1;
21是3与7的倍数,而用5除余1;
15是3与5的倍数,而用7除余1.
因而
70×2是5与7的倍数,用3除余2;
21×3是3与7的倍数,用5除余3;
15×4是3与5的倍数,用7除余4.
如果一个数除以a余数为b,那么给这个数加上a的一个倍数以后再除以a,余数仍然是b.所以,把70×2、21×3与15×4都加起来所得的结果能同时满足"用3除余2、用5除余3、用7除余4"的要求.一般地,
70m+21n+15k (1≤m<3,1≤n<5,1≤k<7)
看了 计算人数的问题有记载说韩信统...的网友还看了以下:
不等式命题等价的问题t∈R,关于m的不等式m>(t^2-1)/(t-2)的否命题是m≤(t^2-1) 2020-03-30 …
●试题二 对文法G[S]:S→a|∧|(T);T→T,S|S;回答问题1~问题3。 【问题1】 对文 2020-05-26 …
名侦探柯南剧场版5:通往天国的倒计时(国语配音)里有道物理题,解题部分在百度百科,请出物理题的问法 2020-06-20 …
图1是HIV侵入人体T淋巴细胞并增值的示意图,图2表示HIV侵入人体后,随时间的变化体内HIV和T 2020-07-07 …
老人遗产与子女继承的问题T某有一处房产,T某共养育4名子女,分别是A、B、C、D.T某2000年突 2020-07-23 …
高斯过程求期望如果X1(t),X2(t),X3(t),X4(t)都是高斯随机过程那么E[X1(t)X 2020-10-31 …
t刚和t强在争论x道几何问题,问题是射击时为什么枪管上有准星.t刚说:“这还不简单,老师上课时不是讲 2020-11-28 …
一个很简答的拉普拉斯变换数学问题请问,t[u(t)-u(t-a)],是如何计算出3个函数的,这个式子 2020-12-31 …
一道极限的问题,t都是趋于0+第一个式子是lim(t趋于0+)(e^t-1)lnt,用等价代换(e^ 2021-01-07 …
例7、设平面内两向量a与b互相垂直,且|a|=2,|b|=1,又k与t是两个不同时为0的实数.(1) 2021-02-05 …