早教吧作业答案频道 -->数学-->
如图,△ABC是等腰三角形,AB=AC,AD是角平分线,以AC为边向外作等边三角形ACE,BE分别与AD、AC交于点F、G,连接CF.(1)求证:∠FBD=∠FCD;(2)若AF=3,DF=1,求EF的值.
题目详情
如图,△ABC是等腰三角形,AB=AC,AD是角平分线,以AC为边向外作等边三角形ACE,BE分别与AD、AC交于点F、G,连接CF.

(1)求证:∠FBD=∠FCD;
(2)若AF=3,DF=1,求EF的值.

(1)求证:∠FBD=∠FCD;
(2)若AF=3,DF=1,求EF的值.
▼优质解答
答案和解析
(1)证明:∵△ABC是等腰三角形,AB=AC,AD是角平分线,
∴AD垂直平分BC,
∴FB=FC,
∴∠FBD=∠FCD;
(2)过A作AH⊥BE于H点,如图,
∵AB=AC,
∴∠ABC=∠ACB,BH=EH,
∴∠ABF=∠ACF,
∵△ACE为等边三角形,
∴AC=AE,∠EAC=60°,
∵AB=AC,
∴AB=AE,
∴∠ABE=∠AEB,
∴∠ACF=∠AEG,
∴∠GFC=∠EAG=60°,
而∠GFC=∠FBC+∠FCD,
∴∠FBC=30°,
∴BF=2FD=2,BD=
FD=
,
设FH=x,
在Rt△ABD中,AB2=AD2+BD2=16+3=19,
在Rt△ABH中,AB2=AH2+BH2=AH2+(x+2)2,
在Rt△AFH中,AH2=AF2-FH2=9-x2,
∴19=9-x2+(x+2)2,解得x=
,
∴BH=BF+FH=2+
=3.5,
∴BE=2BH=7,
∴EF=BE-BF=7-2=5.

∴AD垂直平分BC,
∴FB=FC,
∴∠FBD=∠FCD;
(2)过A作AH⊥BE于H点,如图,
∵AB=AC,
∴∠ABC=∠ACB,BH=EH,
∴∠ABF=∠ACF,
∵△ACE为等边三角形,
∴AC=AE,∠EAC=60°,
∵AB=AC,
∴AB=AE,
∴∠ABE=∠AEB,
∴∠ACF=∠AEG,
∴∠GFC=∠EAG=60°,
而∠GFC=∠FBC+∠FCD,
∴∠FBC=30°,
∴BF=2FD=2,BD=
3 |
3 |
设FH=x,
在Rt△ABD中,AB2=AD2+BD2=16+3=19,
在Rt△ABH中,AB2=AH2+BH2=AH2+(x+2)2,
在Rt△AFH中,AH2=AF2-FH2=9-x2,
∴19=9-x2+(x+2)2,解得x=
3 |
2 |
∴BH=BF+FH=2+
3 |
2 |
∴BE=2BH=7,
∴EF=BE-BF=7-2=5.
看了 如图,△ABC是等腰三角形,...的网友还看了以下:
几ˋˊ何数学题自己先把图画出来吧图:一个由点A.B.C组成的等边三角形中,点D是边AB的中点,点E 2020-05-13 …
在三角形ABC中,角C=90度,AC=6,BC=8,四边形DEFG是它的内接矩形,点D在边AC上, 2020-05-14 …
△ABC是边长为4的等边三角形,以BC为底边做一个顶角为120°的等腰三角形△DBE,以D为顶点作 2020-05-17 …
现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°),如图(1),其中一 2020-06-22 …
如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D,与边BC相交于点F,OA与CD相 2020-07-09 …
如图,在△ABC中,D是AB的中点,E是边AC上一动点,联结DE,过点D作DF⊥DE交边BC于点F 2020-07-09 …
如图,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E为边AC上一 2020-07-17 …
如图,在直角三角形ABC中,∠ABC=90°,∠C=30°,AB=4,D是AC边上的一个动点,过点 2020-07-29 …
已知,如图,△ABC中,AC=3,BC=4,∠C=90°,四边形DEGF为正方形,其中D,E在边AC 2020-11-02 …
如图1,直角三角形ABC中,∠ABC=90°,E是边BC上一点,EM⊥AE,EM交边AC于点M,BG 2020-11-03 …