早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当:△ABD∽

题目详情
如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式;
(3)当:△ABD∽△DCE是等腰三角形时,求AE的长.
▼优质解答
答案和解析
(1)证明:∵△ABC中,∠BAC=90°,AB=AC=1,
∴∠ABC=∠ACB=45°.
∵∠ADE=45°,
∴∠BDA+∠CDE=135°.
又∠BDA+∠BAD=135°,
∴∠BAD=∠CDE.
∴△ABD∽△DCE.
(2)∵△ABD∽△DCE,

∵BD=x,
∴CD=BC﹣BD= ﹣x.

∴CE= x﹣x 2
∴AE=AC﹣CE=1﹣( x﹣x 2 )=x 2 x+1.即y=x 2 x+1.
(3)∠DAE<∠BAC=90°,∠ADE=45°,
∴当△ADE是等腰三角形时,第一种可能是AD=DE.
又∵△ABD∽△DCE,
∴△ABD∽△DCE.
∴CD=AB=1.
∴BD= ﹣1.
∵BD=CE,
∴AE=AC﹣CE=2﹣
当△ADE是等腰三角形时,第二种可能是ED=EA.
∵∠ADE=45°,
∴此时有∠DEA=90°.
即△ADE为等腰直角三角形.
∴AE=DE= AC= .AE的长为2﹣