早教吧作业答案频道 -->其他-->
如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q.是否存在点P,使得QP=QO;若存在,求出相
题目详情

▼优质解答
答案和解析
①根据题意,画出图(1),
在△QOC中,OC=OQ,
∴∠OQC=∠OCP,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠AOC=30°,
∴∠QPO=∠OCP+∠AOC=∠OCP+30°,
在△OPQ中,∠QOP+∠QPO+∠OQC=180°,
即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,
整理得,3∠OCP=120°,
∴∠OCP=40°.

②当P在线段OA的延长线上(如图2)
∵OC=OQ,
∴∠OQP=(180°-∠QOC)×
①,
∵OQ=PQ,
∴∠OPQ=(180°-∠OQP)×
②,
在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③,
把①②代入③得∠QOC=20°,则∠OQP=80°
∴∠OCP=100°;

③当P在线段OA的反向延长线上(如图3),
∵OC=OQ,
∴∠OCP=∠OQC=(180°-∠COQ)×
①,
∵OQ=PQ,
∴∠P=(180°-∠OQP)×
②,
∵∠AOC=30°,
∴∠COQ+∠POQ=150°③,
∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,
①②③④联立得
∠P=10°,
∴∠OCP=180°-150°-10°=20°.
故答案为:40°、20°、100°.

在△QOC中,OC=OQ,
∴∠OQC=∠OCP,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠AOC=30°,
∴∠QPO=∠OCP+∠AOC=∠OCP+30°,
在△OPQ中,∠QOP+∠QPO+∠OQC=180°,
即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,
整理得,3∠OCP=120°,
∴∠OCP=40°.

②当P在线段OA的延长线上(如图2)
∵OC=OQ,
∴∠OQP=(180°-∠QOC)×
1 |
2 |
∵OQ=PQ,
∴∠OPQ=(180°-∠OQP)×
1 |
2 |
在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③,
把①②代入③得∠QOC=20°,则∠OQP=80°
∴∠OCP=100°;

③当P在线段OA的反向延长线上(如图3),
∵OC=OQ,
∴∠OCP=∠OQC=(180°-∠COQ)×
1 |
2 |
∵OQ=PQ,
∴∠P=(180°-∠OQP)×
1 |
2 |
∵∠AOC=30°,
∴∠COQ+∠POQ=150°③,
∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,
①②③④联立得
∠P=10°,
∴∠OCP=180°-150°-10°=20°.
故答案为:40°、20°、100°.
看了 如图,直线l经过⊙O的圆心O...的网友还看了以下:
已知任意3点A,B,C.其坐标分别为A(M,N)B(O,P)C(V,W)求对应的抛物线解析式y=a 2020-06-02 …
设C是圆心为O,半径为r的圆,对任意不在圆上的点P作射线OP设C是圆心为O,半径为r的圆,对任意不 2020-06-03 …
已知O为坐标原点,F为椭圆C:x2+y2/2=1在y轴正半轴上的焦点,过F且斜率为负根号2的直线l 2020-06-21 …
(2014•崇明县二模)已知⊙O的半径为3,⊙P与⊙O相切于点A,经过点A的直线与⊙O、⊙P分别交 2020-06-23 …
已知圆O的方程为x2+y2=1,设圆O与x轴交于P,Q两点,M是圆O上异于P,Q的任意一旦,直线P 2020-07-20 …
直线AB经过圆O的圆心,与圆O相交于点AB,点C在圆O上,且角AOC=30°,点P是直线AB上的一 2020-07-26 …
如图a直线l经过圆o的圆心o,且与圆o交于A,B两点,点c在圆o上且点C在圆o上,且∠AOC=30 2020-07-26 …
如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线 2020-07-26 …
如图,AB是⊙O的直径,点C在BA的延长线上,CA=AO,点D在⊙O上,∠ABD=30°.⑴求证: 2020-07-31 …
在平面直角坐标系中,o是坐标原点,矩形oabc的位置如图所示,点A,C的坐标分别为(10,0),(0 2020-12-25 …