早教吧作业答案频道 -->其他-->
如图,点E、F为线段BD的两个三等分点,四边形AECF是菱形.(1)试判断四边形ABCD的形状,并加以证明;(2)若菱形AECF的周长为20,BD为24,试求四边形ABCD的面积.
题目详情
如图,点E、F为线段BD的两个三等分点,四边形AECF是菱形.(1)试判断四边形ABCD的形状,并加以证明;
(2)若菱形AECF的周长为20,BD为24,试求四边形ABCD的面积.
▼优质解答
答案和解析
(1)四边形ABCD为菱形.
理由如下:如图,连接AC交BD于点O,
∵四边形AECF是菱形,
∴AC⊥BD,AO=OC,EO=OF,
又∵点E、F为线段BD的两个三等分点,
∴BE=FD,
∴BO=OD,
∵AO=OC,
∴四边形ABCD为平行四边形,
∵AC⊥BD,
∴四边形AECF为菱形;
(2)∵四边形AECF为菱形,且周长为20,
∴AE=5,
∵BD=24,
∴EF=8,OE=
EF=
×8=4,
由勾股定理得,AO=
=
=3,
∴AC=2AO=2×3=6,
∴S四边形ABCD=
BD•AC=
×24×6=72.
理由如下:如图,连接AC交BD于点O,
∵四边形AECF是菱形,
∴AC⊥BD,AO=OC,EO=OF,
又∵点E、F为线段BD的两个三等分点,
∴BE=FD,
∴BO=OD,
∵AO=OC,

∴四边形ABCD为平行四边形,
∵AC⊥BD,
∴四边形AECF为菱形;
(2)∵四边形AECF为菱形,且周长为20,
∴AE=5,
∵BD=24,
∴EF=8,OE=
| 1 |
| 2 |
| 1 |
| 2 |
由勾股定理得,AO=
| AE2−OE2 |
| 52−42 |
∴AC=2AO=2×3=6,
∴S四边形ABCD=
| 1 |
| 2 |
| 1 |
| 2 |
看了 如图,点E、F为线段BD的两...的网友还看了以下:
E是平行四边形ABCD对角线交点,过点A,B,C,D,E分别向直线l引垂线,垂足分别为E是平行四边形 2020-03-31 …
初二电学竞赛题将L3的E.F端与A.B分别接触,L1,L2,L3均发光,但亮度不足;将L3的E.F 2020-04-27 …
已知b分之a=d分之c=f分之e=2且b+d+f≠0.(1)b+d+f分之a+c+e=(2)b-d 2020-06-09 …
用以下英文宇母填在上a,a,a,a,a,a,b,e,e,d,e,e,e,e,e,e,f,g,g用以 2020-06-24 …
下列说法正确的是()A.分子晶体都具有分子密堆积的特征B.分子晶体中,分子间作用力越大,分子越稳定 2020-07-06 …
高数导数问题.设f(x)=(e^x-e^a)g(x)在x=a处可导,则函数g(x)应该满足条件是? 2020-07-20 …
已知向量a≠e,|e|=1,满足:任意t∈R.已知向量a不等于e,|e|=1,对任意t属于R,恒有 2020-07-25 …
矩阵分配律(A-E)(A+E)=(A+E)(A-E),因为两边的乘积都为A^2-E^2,不是在矩阵 2020-07-31 …
数学向量1,A,B,C,D为平面上4个互异点,且满足(向量DB+DC-2DA)点乘(AB-AC)=0 2020-11-02 …
判断题(勾和叉):1.当a=2分之1,b=3分之1时,代数式1-3ab的值为6分之5()2.当x=3 2020-11-08 …