早教吧作业答案频道 -->数学-->
设M,N是椭圆x^2/9+y^2/4=1上的两点,OM⊥ON(O为坐标原点),则|OM|·|ON|的最小值A.9/2B.6C.72/13D.9
题目详情
设M,N是椭圆x^2/9+y^2/4=1上的两点,OM⊥ON(O为坐标原点),则|OM|·|ON|的最小值
A.9/2 B.6 C.72/13 D.9
A.9/2 B.6 C.72/13 D.9
▼优质解答
答案和解析
这题是有个结论很好用1/|OM|^2+1/|ON|^2=1/9+1/4
设M(|OM|cost,|OM|sint)
N(|ON|cos(t+π/2),|ON|sin(t+π/2))=(-|ON|sint,|ON|cost)
代入方程得到:
|OM|^2cos^2t/9+|OM|^2sin^2t/4=1得到:cos^2t/9+sin^2t/4=1/|OM|^2
同样可以得到 sin^2t/9+cos^t/4=1/|ON|^2
相加所以有:1/9+1/4=1/|OM|^2+1/|ON|^2>=2/|OM|*|ON|
所以|OM|*|ON|>=72/13
选C
设M(|OM|cost,|OM|sint)
N(|ON|cos(t+π/2),|ON|sin(t+π/2))=(-|ON|sint,|ON|cost)
代入方程得到:
|OM|^2cos^2t/9+|OM|^2sin^2t/4=1得到:cos^2t/9+sin^2t/4=1/|OM|^2
同样可以得到 sin^2t/9+cos^t/4=1/|ON|^2
相加所以有:1/9+1/4=1/|OM|^2+1/|ON|^2>=2/|OM|*|ON|
所以|OM|*|ON|>=72/13
选C
看了 设M,N是椭圆x^2/9+y...的网友还看了以下: