早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(1)如图1,点P为矩形ABCD对角线的交点.请你完成以下作图:过点B作PA的平行线BPˊ,过点C作PD的平行线交BPˊ于点Pˊ,连接PPˊ;(2)在(1)的条件下,判断PPˊ与BC的位置关系,并证明你的

题目详情
(1)如图1,点P为矩形ABCD对角线的交点.请你完成以下作图:过点B作PA的平行线BPˊ,过点C作PD的平行线交BPˊ于点Pˊ,连接PPˊ;
(2)在(1)的条件下,判断PPˊ与BC的位置关系,并证明你的结论;
(3)如图2,若点P为矩形ABCD内任意一点.求证:以AP、BP、CP、DP为边可以构成一个四边形,该四边形的两条对角线分别等于线段AB和BC,且互相垂直.
▼优质解答
答案和解析
(1)如图所示:


(2)PP'与BC的位置关系为:垂直.
证明:∵BP'∥PA,CP'∥PD,
∴四边形PBP'C是平行四边形,
∵点P是矩形ABCD对角线的交点,
∴BP=
1
2
BD,CP=
1
2
AC,AC=BD,
∴BP=CP,
∴四边形PBP'C是菱形,
∴PP'⊥BC.

(3)证明:过点B作AP的平行线BP,过点C作PD的平行线交BP'于点P',连接PP',交BC于点M.

∴∠PAB+∠ABP'=180°,∠PDC+∠DCP'=180°,
以PB、BP'、P'C、CP为边构成四边形,且以BC、PP'为对角线,
∵四边形ABCD是矩形,
∴AD∥BC,AD=BC,∠ABC=90°,
∴∠DAB+ABC=180°,∠ADC+∠DCB=180°,
∴∠1=∠2,∠3=∠4,
∴△APD≌△BP'C(ASA),
∴AP=BP'
∴四边形ABP'P是平行四边形.
∴AB∥PP',AB=PP'AP=BP',
同理可证:PD=CP',
∴∠PMC=∠ABC=90°,
∴PP'⊥BC于M,
∴以AP、BP、CP、DP为边能构成四边形,该四边形的两条对角线分别等于线段AB和BC,且互相垂直.