早教吧作业答案频道 -->数学-->
高数,高阶导数.已知dx/dy=1/y'导出d^2x/dy^2=-y''/(y')^3
题目详情
高数,高阶导数.已知dx/dy=1/y' 导出d^2x/dy^2=-y''/(y')^3
▼优质解答
答案和解析
设 y=f(x) 的反函数为 x=g(y),已知
g'(y) = 1/f'(x),
则
g"(y) = (d/dy)g'(y)
= (d/dx)[1/f'(x)]*(dx/dy)
= {-f'(x)/[f"(x)]^2}*[1/f'(x)]
= -f'(x)/[f"(x)]^3,
就是.
g'(y) = 1/f'(x),
则
g"(y) = (d/dy)g'(y)
= (d/dx)[1/f'(x)]*(dx/dy)
= {-f'(x)/[f"(x)]^2}*[1/f'(x)]
= -f'(x)/[f"(x)]^3,
就是.
看了 高数,高阶导数.已知dx/d...的网友还看了以下: