早教吧作业答案频道 -->数学-->
一道向量证明题空间任意四个向量a,b,c,d,必存在四个不全为零的实数e,f,g,h,使ea+fb+rc+gd=0向量.
题目详情
一道向量证明题
空间任意四个向量a,b,c,d,必存在四个不全为零的实数e,f,g,h,使ea+fb+rc+gd=0向量.
空间任意四个向量a,b,c,d,必存在四个不全为零的实数e,f,g,h,使ea+fb+rc+gd=0向量.
▼优质解答
答案和解析
分两种情况证明:
当a,b,c,d中任意三个都不共面时,选取其中任意三个,如a,b,c作为空间的一组基.那么,空间中的任意一个向量都可以用这一组基来表示
取向量k=-hd,h 不等于0,
则可知,必存在不全为零的实数e,f,g,使得
k=ea+fb+gc,即ea+fb+gc+hd=0
当a,b,c,d中存在三个向量共面时,不妨设为a,b,c共面,则必存在不全为零的实数e,f,g,使得
ea+fb+gc=0
取h=0
则有,ea+fb+gc+hd=0
你的题目有些字母打错了.
当a,b,c,d中任意三个都不共面时,选取其中任意三个,如a,b,c作为空间的一组基.那么,空间中的任意一个向量都可以用这一组基来表示
取向量k=-hd,h 不等于0,
则可知,必存在不全为零的实数e,f,g,使得
k=ea+fb+gc,即ea+fb+gc+hd=0
当a,b,c,d中存在三个向量共面时,不妨设为a,b,c共面,则必存在不全为零的实数e,f,g,使得
ea+fb+gc=0
取h=0
则有,ea+fb+gc+hd=0
你的题目有些字母打错了.
看了 一道向量证明题空间任意四个向...的网友还看了以下:
设F(X),G(X)是数域K上的不可约多项式,存在C属于C,若X-C整除F(X),G(X),则G( 2020-06-03 …
设f(x),g(x)在[a,b]上连续,且均为严格单增的正函数,证明:存在c€(a,b)使f(b) 2020-06-18 …
在同一直角坐标系中由抛物线y=x^-(5c-3)x-c和三个点G((-1/2)c,(5/2)c), 2020-07-30 …
对一般的二维数组G而言,当()时,其按行存储的G[I,J]的地址与按列存储的G[J,I]的地址相同 2020-07-31 …
非空集合G关于运算⊕满足:(1)对任意的a,b∈G,都有a⊕b∈G;(2)存在e∈G,都有a⊕e= 2020-08-01 …
一道求导的概念题目!设g(x)在x=x0的某领域内有定义,f(x)=|x-x0|g(x),则f(x) 2020-11-01 …
非空集合G关于运算⊕满足:(1)对任意a、b∈G,都有a⊕b∈G;(2)存在c∈G,使得对一切a∈G 2020-11-10 …
数学求助!f和g在[0,1]连续,supf(x)=supg(x),问哪些正确:(1)inf(-f)= 2020-12-18 …
在一恒温恒容的2L的密闭容器中存在一个反应A(g)+B(g)===C(g)+D(g),下面充入一定量 2020-12-22 …
如何做化学平衡中有多步反应的题?在化学平衡中,存在多步反应的题,没有思路,1.将化合物a放入密闭容器 2021-01-22 …