早教吧作业答案频道 -->数学-->
lim(x→∽)(2/∏arctanx-1)^x
题目详情
lim(x→∽)(2/∏arctanx-1)^x
▼优质解答
答案和解析
利用重要极限lim(x→0) (1+x)^(1/x)=e
lim(2/兀arctanx)=1 (X→正无穷) limx=正无穷(X→正无穷)
原式=lim(1+2/兀arctanx-1)^x =lim(1+2/兀arctanx-1)^(1/2/兀arctanx-1)(2/兀arctanx-1)x
=e^lim(2/兀arctanx-1)x
lim(2/兀arctanx)=1 (X→正无穷) limx=正无穷(X→正无穷)
原式=lim(1+2/兀arctanx-1)^x =lim(1+2/兀arctanx-1)^(1/2/兀arctanx-1)(2/兀arctanx-1)x
=e^lim(2/兀arctanx-1)x
看了 lim(x→∽)(2/∏ar...的网友还看了以下: