早教吧作业答案频道 -->数学-->
急,不定积分∫arctanxdx=x*arctanx-∫xd(arctanx)=x*arctanx-∫x/(1+x²)dx=x*arctanx-(1/2)∫d(x²)/(1+x²)=x*arctanx-(1/2)∫d(1+x²)/(1+x²)=x*arctanx-(1/2)ln(1+x²)+C和∫xarctanxdx=(
题目详情
急,不定积分
∫ arctanx dx
= x * arctanx - ∫ x d(arctanx)
= x * arctanx - ∫ x/(1+x²) dx
= x * arctanx - (1/2)∫ d(x²)/(1+x²)
= x * arctanx - (1/2)∫ d(1+x²)/(1+x²)
= x * arctanx - (1/2)ln(1+x²) + C和
∫xarctanxdx
=(1/2)∫ arctanxd(x²)
分部积分
=(1/2)x²arctanx - (1/2)∫ x²/(1+x²) dx
=(1/2)x²arctanx - (1/2)∫ (x²+1-1)/(1+x²) dx
=(1/2)x²arctanx - (1/2)∫ 1 dx + (1/2)∫ 1/(1+x²) dx
=(1/2)x²arctanx - (1/2)x + (1/2)arctanx + C.这两个题目中都有∫1/1+x^2dx但为什么最后算出的式子不一样呢
∫ arctanx dx
= x * arctanx - ∫ x d(arctanx)
= x * arctanx - ∫ x/(1+x²) dx
= x * arctanx - (1/2)∫ d(x²)/(1+x²)
= x * arctanx - (1/2)∫ d(1+x²)/(1+x²)
= x * arctanx - (1/2)ln(1+x²) + C和
∫xarctanxdx
=(1/2)∫ arctanxd(x²)
分部积分
=(1/2)x²arctanx - (1/2)∫ x²/(1+x²) dx
=(1/2)x²arctanx - (1/2)∫ (x²+1-1)/(1+x²) dx
=(1/2)x²arctanx - (1/2)∫ 1 dx + (1/2)∫ 1/(1+x²) dx
=(1/2)x²arctanx - (1/2)x + (1/2)arctanx + C.这两个题目中都有∫1/1+x^2dx但为什么最后算出的式子不一样呢
▼优质解答
答案和解析
问题问的这么工整也不容易啊,怎么会没有人来?
------------------------------------------------------------------------------------
注意到第①个不定积分是x/(1+x^2),这个显然就是[ln(1+x^2)]'
而第②个是(x²+1-1)/(1+x²),这个就有本质区别啦,
拆成两份就是1和1/(1+x^2),分子都不一样,结果怎么会一样呢?
------------------------------------------------------------------------------------
注意到第①个不定积分是x/(1+x^2),这个显然就是[ln(1+x^2)]'
而第②个是(x²+1-1)/(1+x²),这个就有本质区别啦,
拆成两份就是1和1/(1+x^2),分子都不一样,结果怎么会一样呢?
看了 急,不定积分∫arctanx...的网友还看了以下:
(x^2+sin^2x)/(x^2+1)sec^2xdx的不定积分我算的是x-arctanx+c答 2020-05-16 …
微积分1.g(x)=1+x,x不等0时,f[g(x)]=(2-x)/x,则f‘(0)=()A.2B 2020-05-17 …
求∫(arctanx/x^2)dx,下面是我算的,答案怎么是(-1/x)*arctanx-(1/2 2020-05-17 …
大一,单调性证不等式,利用单调性证明下列不等式x≥0时,ln(1+x)≥arctanx/(1+x) 2020-06-02 …
求不定积分:∫x(arctanx)^2dx如题求不定积分∫x(arctanx)^2dx,请给出详细 2020-06-22 …
急,不定积分∫arctanxdx=x*arctanx-∫xd(arctanx)=x*arctanx 2020-07-22 …
(arctanx-arcsinx)/(x^2arcsinx)的极限.x趋向0为什么x→0,分子:a 2020-07-22 …
分段函数求解当x的绝对值小于等于1,f(x)=arctanx当x大于1时f(x)=π/4+(x-1) 2020-12-08 …
x→∞,x/[(1+x^2)^(1/2)]的极限是1吗,如何推算的其实题目是x→∞,[(arctan 2020-12-28 …
下列极限问题不能用洛必达法则求解的是(),为什么呢A.lim(x^2sin1/x)/sinxx趋于0 2021-02-16 …