早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如果e^(x+y)+xyz=e^z,则dz=?(e^(x+y)+yz)dx/(e^z-xy)+(e^x+y+xz)dy/(e^z-xy),

题目详情
如果e^(x+y)+xyz=e^z,则dz=?
(e^(x+y)+yz)dx/(e^z-xy)+(e^x+y+xz)dy/(e^z-xy),
▼优质解答
答案和解析
两边同时求微分得:
e^(x+y) ·(dx+dy)+yzdx+xzdy+xydz=e^z· dz
移项得:
(e^z-xy)dz=e^(x+y) ·(dx+dy)+yzdx+xzdy
=e^(x+y)dx+e^(x+y)dy+yzdx+xzdy
=[e^(x+y) +yz]dx + [e^(x+y) +xz]dy
∴dz=﹛[e^(x+y) +yz]dx+[e^(x+y) +xz]dy﹜/(e^z-xy)
=[e^(x+y) +yz]dx/(e^z-xy) + [e^(x+y) +xz]dy/(e^z-xy)
其实楼上的就对,只是没化简到最后而已