早教吧作业答案频道 -->数学-->
如图,抛物线y=-x2+x-2与x轴相交于点A、B,与y轴相交于点C.(1)求证:△AOC∽△COB;(2)过点C作CD∥x轴交抛物线于点D.若点P在线段AB上以每秒1个单位的速度由A向B运动,同时点Q在线段CD上
题目详情



(1)求证:△AOC∽△COB;
(2)过点C作CD∥x轴交抛物线于点D.若点P在线段AB上以每秒1个单位的速度由A向B运动,同时点Q在线段CD上也以每秒1个单位的速度由D向C运动,则经过几秒后,PQ=AC.
▼优质解答
答案和解析
(1)可先根据抛物线的解析式求出A,B,C的坐标,然后看OA,OC,OB是否对应成比例即可;
(2)根据抛物线的对称性可知:AC=BD,四边形ABDC为等腰梯形,那么本题可分两种情况进行求【解析】
①当四边形APQC是等腰梯形,即四边形PQDB是平行四边形时,AC=PQ,那么QD=PB,可据此来求t的值.
②当四边形ACQP是平行四边形时,AC=PQ,那么此时AP=CQ,可据此求出t的值.
【解析】
(1)在抛物线y=-
x2+
x-2上,
令y=0时,即-
x2+
x-2=0,
得x1=1,x2=4
令x=0时,y=-2
∴A(1,0),B(4,0),C(0,-2)(3分)
∴OA=1,OB=4,OC=2
∴
,
∴
又∵∠AOC=∠BOC
∴△AOC∽△COB;

(2)设经过t秒后,PQ=AC.
由题意得:AP=DQ=t,
∵A(1,0)、B(4,0)
∴AB=3
∴BP=3-t
∵CD∥x轴,点C(0,-2)
∴点D的纵坐标为-2
∵点D在抛物线y=-
x2+
x-2上
∴D(5,-2)
∴CD=5
∴CQ=5-t
①当AP=CQ,即四边形APQC是平行四边形时,PQ=AC.
t=5-t,t=2.5
②连接BD,当DQ=BP,即四边形PBDQ是平行四边形时,PQ=BD=AC.
t=3-t,t=1.5,
所以,经过2.5秒或1.5秒时,PQ=AC.
(2)根据抛物线的对称性可知:AC=BD,四边形ABDC为等腰梯形,那么本题可分两种情况进行求【解析】
①当四边形APQC是等腰梯形,即四边形PQDB是平行四边形时,AC=PQ,那么QD=PB,可据此来求t的值.
②当四边形ACQP是平行四边形时,AC=PQ,那么此时AP=CQ,可据此求出t的值.
【解析】
(1)在抛物线y=-


令y=0时,即-


得x1=1,x2=4
令x=0时,y=-2
∴A(1,0),B(4,0),C(0,-2)(3分)
∴OA=1,OB=4,OC=2
∴


∴

又∵∠AOC=∠BOC
∴△AOC∽△COB;

(2)设经过t秒后,PQ=AC.
由题意得:AP=DQ=t,
∵A(1,0)、B(4,0)
∴AB=3
∴BP=3-t
∵CD∥x轴,点C(0,-2)
∴点D的纵坐标为-2
∵点D在抛物线y=-


∴D(5,-2)
∴CD=5
∴CQ=5-t
①当AP=CQ,即四边形APQC是平行四边形时,PQ=AC.
t=5-t,t=2.5
②连接BD,当DQ=BP,即四边形PBDQ是平行四边形时,PQ=BD=AC.
t=3-t,t=1.5,
所以,经过2.5秒或1.5秒时,PQ=AC.
看了 如图,抛物线y=-x2+x-...的网友还看了以下:
积极型与消极型组合管理策略在投资理念上的不同之处在于( )A. 证券选择策略的运用与否B. 是否 2020-05-22 …
已知关于x的二次函数y=x²-(m+n+1)x+m(n≥0)与x轴两个交点M(a,0),N(B,0 2020-06-03 …
已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为 2020-06-12 …
问:已知函数fx=e∧x-ax(a为常数)的图像与y轴交于点A,曲线y=fx在点A处的切线斜率为- 2020-06-23 …
已知椭圆的中心在原点,焦点在轴上,且短轴长为2,离心率等于.(1)求椭圆的方程;(2)过椭圆的右焦 2020-06-30 …
如图所示,两根刚性轻杆上端由自由旋转轴A连接,轻杆下端固定一根自然伸长的匀质轻弹簧,围成边长为L的 2020-07-08 …
如图,抛物线关于y轴对称,它的顶点在坐标原点,点P(2,1),A(x1,y1),B(x2,y2)均 2020-07-26 …
下图是“尚也于民国二年八月十日经吴、张二人介绍入党——共和党党员证”,并盖有红色的“共和党”印章。这 2020-11-27 …
(0,Y)是在那个轴题目没说Y指的是什么东西A.在X轴B.在Y轴C.在轴线上(0,Y)是在那个轴题目 2020-12-05 …
如图,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴于点C,点D为对称轴l上的一个动点.(1 2021-01-11 …