早教吧作业答案频道 -->数学-->
如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你
题目详情
如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).

(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;
(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.

(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;
(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.
▼优质解答
答案和解析
(1)判断:EN与MF相等(或EN=MF),点F在直线NE上,
(2)成立.
连接DF,NF,证明△DBM和△DFN全等(AAS),
∵△ABC是等边三角形,
∴AB=AC=BC.
又∵D,E,F是三边的中点,
∴EF=DF=BF.
∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,
∴∠BDM=∠FDN,
在△DBM和△DFN中,
,
∴△DBM≌△DFN,
∴BM=FN,∠DFN=∠FDB=60°,
∴NF∥BD,
∵E,F分别为边AC,BC的中点,
∴EF是△ABC的中位线,
∴EF∥BD,
∴F在直线NE上,
∵BF=EF,
∴MF=EN.

(3)如图③,MF与EN相等的结论仍然成立(或MF=NE成立).
连接DF、DE,
由(2)知DE=DF,∠NDE=∠FDM,DN=DM,
在△DNE和△DMF中,
∴△DNE≌△DMF,
∴MF=NE.
(2)成立.连接DF,NF,证明△DBM和△DFN全等(AAS),
∵△ABC是等边三角形,
∴AB=AC=BC.
又∵D,E,F是三边的中点,
∴EF=DF=BF.
∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,
∴∠BDM=∠FDN,
在△DBM和△DFN中,
|
∴△DBM≌△DFN,
∴BM=FN,∠DFN=∠FDB=60°,
∴NF∥BD,
∵E,F分别为边AC,BC的中点,
∴EF是△ABC的中位线,
∴EF∥BD,
∴F在直线NE上,
∵BF=EF,
∴MF=EN.

(3)如图③,MF与EN相等的结论仍然成立(或MF=NE成立).
连接DF、DE,
由(2)知DE=DF,∠NDE=∠FDM,DN=DM,
在△DNE和△DMF中,
|
∴△DNE≌△DMF,
∴MF=NE.
看了 如图,已知等边三角形ABC中...的网友还看了以下:
正方体ABCD-A'B'C'D'中,点P在侧面BCC'B'及其边上运动,并且总是保持AP⊥BD', 2020-05-16 …
如图,单匝正方形导体线框ABCD线框边长为a,电阻为R,整个线框处在匀强磁场B中,磁场方向与线框平 2020-05-17 …
如图所示,在光滑水平面上有一长为L1、宽为L2的单匝矩形闭合导体线框abcd,处于磁感应强度为B的 2020-06-23 …
如图所示,在光滑水平面上有一长为L1、宽为L2的单匝矩形闭合导体线框abcd,处于磁感应强度为B的 2020-06-23 …
如图所示,在光滑水平面上有一长为L1、宽为L2的单匝矩形闭合导体线框abcd,处于磁感应强度为B的 2020-06-23 …
如图所示,闭合的矩形导体线圈abcd在匀强磁场中绕垂直于磁感线的对称轴OO′匀速转动,沿着OO′方 2020-06-25 …
在三角形ABC中,角A角B的平分线分别交对边于D,E角C的外角平分线交对边延长线于F,求证:D、E 2020-08-03 …
如图所示,一边长L=0.2m,质量m1=0.5kg,电阻R=0.1Ω的正方形导体线框abcd,与一质 2020-10-31 …
四界线中最能体现区域边界具有过渡性的是()A.a界线B.b界线C.c界线D.d界线 2020-12-05 …
四界线中最能体现区域边界具有过渡性的是()A.a界线B.b界线C.c界线D.d界线 2020-12-05 …