早教吧作业答案频道 -->数学-->
∫dx/(sinx+tanx)=?请做出-1/2sin^2x+cosx/2sin^2x+ln(csct-cotx)+c的结果
题目详情
∫dx/(sinx+tanx)=?
请做出 -1/2sin^2x+cosx/2sin^2x+ln(csct-cotx)+c的结果
请做出 -1/2sin^2x+cosx/2sin^2x+ln(csct-cotx)+c的结果
▼优质解答
答案和解析
∫[1/(sinx+tanx)]dx
=∫[cosx/(sinxcosx+sinx)]dx=∫{cosx/[sinx(1+cosx)]}dx
=∫{sinxcosx/[(sinx)^2(1+cosx)]}dx
=-∫{cosx/[(sinx)^2(1+cosx)]}d(cosx).
令cosx=u,则(sinx)^2=1-u^2.
∴∫[1/(sinx+tanx)]dx
=-∫{u/[(1-u^2)(1+u)]}du
=-∫{(1+u-1)/[(1-u^2)(1+u)]}du
=-∫[1/(1-u^2)]du+∫{1/[(1-u^2)(1+u)]}du
=-∫[1/(1-u^2)]du+(1/2)∫{(1+u+1-u)/[(1-u^2)(1+u)]}du
=-∫[1/(1-u^2)]du+(1/2)∫[1/(1-u^2)]du+(1/2)∫[1/(1+u)^2]du
=-(1/2)∫[1/(1-u^2)]du+(1/2)∫[1/(1+u)^2]du
=-(1/4)∫[(1+u+1-u)/(1-u^2)]du-(1/2)[1/(1+u)]
=-(1/4)∫[1/(1-u)]du-(1/4)∫[1/(1+u)]du-(1/2)[1/(1+cosx)]
=(1/4)ln|1-u|-(1/4)ln|1+u|-(1/2)(1-cosx)/[1-(cosx)^2]+C
=(1/4)ln[(1-cosx)/(1+cosx)]-(1/2)(1-cosx)/(sinx)^2+C
=(1/4)ln[(1-cosx)^2/(sinx)^2]-(1/2)(1-cosx)/(sinx)^2+C
=(1/2)ln[(1-cosx)/sinx]-1/[2(sinx)^2]+cosx/[2(sinx)^2]+C
=-1/[2(sinx)^2]+cosx/[2(sinx)^2]+(1/2)ln(secx-cotx)+C.
注:你所给出的答案是错误的.也许是你不小心造成的,请认真核查.
=∫[cosx/(sinxcosx+sinx)]dx=∫{cosx/[sinx(1+cosx)]}dx
=∫{sinxcosx/[(sinx)^2(1+cosx)]}dx
=-∫{cosx/[(sinx)^2(1+cosx)]}d(cosx).
令cosx=u,则(sinx)^2=1-u^2.
∴∫[1/(sinx+tanx)]dx
=-∫{u/[(1-u^2)(1+u)]}du
=-∫{(1+u-1)/[(1-u^2)(1+u)]}du
=-∫[1/(1-u^2)]du+∫{1/[(1-u^2)(1+u)]}du
=-∫[1/(1-u^2)]du+(1/2)∫{(1+u+1-u)/[(1-u^2)(1+u)]}du
=-∫[1/(1-u^2)]du+(1/2)∫[1/(1-u^2)]du+(1/2)∫[1/(1+u)^2]du
=-(1/2)∫[1/(1-u^2)]du+(1/2)∫[1/(1+u)^2]du
=-(1/4)∫[(1+u+1-u)/(1-u^2)]du-(1/2)[1/(1+u)]
=-(1/4)∫[1/(1-u)]du-(1/4)∫[1/(1+u)]du-(1/2)[1/(1+cosx)]
=(1/4)ln|1-u|-(1/4)ln|1+u|-(1/2)(1-cosx)/[1-(cosx)^2]+C
=(1/4)ln[(1-cosx)/(1+cosx)]-(1/2)(1-cosx)/(sinx)^2+C
=(1/4)ln[(1-cosx)^2/(sinx)^2]-(1/2)(1-cosx)/(sinx)^2+C
=(1/2)ln[(1-cosx)/sinx]-1/[2(sinx)^2]+cosx/[2(sinx)^2]+C
=-1/[2(sinx)^2]+cosx/[2(sinx)^2]+(1/2)ln(secx-cotx)+C.
注:你所给出的答案是错误的.也许是你不小心造成的,请认真核查.
看了 ∫dx/(sinx+tanx...的网友还看了以下:
f(x)=yx^2+x+y+xyf'x(x,y)=2xy+1+yf'y(x,y)=x^2+1+x我 2020-05-14 …
对0到x上f(x+t)dt的变上限积分求导时令 x+t=u 则dt=du 为什么不是d(x+t)= 2020-05-16 …
求∫(arctanx/x^2)dx,下面是我算的,答案怎么是(-1/x)*arctanx-(1/2 2020-05-17 …
方程1/x+a-1/x+b=1/x+c-1/x+d的解是多少?(a,b,c,d表示不同的数)是1/ 2020-06-27 …
1.如果X的n次方=a,(n是大于的1的整数),那么x叫做a的次方根.当n为奇数时,x叫做a的方根 2020-07-12 …
x^4+a*x^3+x^2+c*x+d最少需要做几次乘法? 2020-07-20 …
设函数f(x)和g(x)在点x0(x0中的0是下标)处不连续,而函数h(x)在点x0连续,则下列哪 2020-07-29 …
一道SAT数学题,好久没学数学了,忘了改咋做forallpositiveintegersx,thef 2020-11-04 …
y=x+√(1-x^2)这回规定用x=cost做因为-1≤x≤1所以0≤t≤π所以sint<0时是不 2020-11-23 …
一次函数不难,小学学历勿进如图所示,D是反比例函数y=x分之k(k<0)的图像上一点,过点D做DE⊥ 2020-12-18 …