早教吧作业答案频道 -->数学-->
如图,直线AB经过O上的点C,直线AO与O交于点E和点D,OB与O交于点F,连接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①直线AB是O的切线;②∠FDC=∠EDC;(2)求CD的长.
题目详情
如图,直线AB经过 O上的点C,直线AO与 O交于点E和点D,OB与 O交于点F,连接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.

(1)求证:①直线AB是 O的切线;②∠FDC=∠EDC;
(2)求CD的长.

(1)求证:①直线AB是 O的切线;②∠FDC=∠EDC;
(2)求CD的长.
▼优质解答
答案和解析
(1)①证明:连接OC.
∵OA=OB,AC=CB,
∴OC⊥AB,
∵点C在 O上,
∴AB是 O切线.
②证明:∵OA=OB,AC=CB,
∴∠AOC=∠BOC,
∵OD=OF,
∴∠ODF=∠OFD,
∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,
∴∠BOC=∠OFD,
∴OC∥DF,
∴∠CDF=∠OCD,
∵OD=OC,
∴∠ODC=∠OCD,
∴∠ADC=∠CDF.
(2)作ON⊥DF于N,延长DF交AB于M.
∵ON⊥DF,
∴DN=NF=3,
在RT△ODN中,∵∠OND=90°,OD=5,DN=3,
∴ON=
=4,
∵∠OCM+∠CMN=180°,∠OCM=90°,
∴∠OCM=∠CMN=∠MNO=90°,
∴四边形OCMN是矩形,
∴ON=CM=4,MN=OC=5,
在RT△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=8,
∴CD=
=
=4
.
∵OA=OB,AC=CB,
∴OC⊥AB,
∵点C在 O上,

∴AB是 O切线.
②证明:∵OA=OB,AC=CB,
∴∠AOC=∠BOC,
∵OD=OF,
∴∠ODF=∠OFD,
∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,
∴∠BOC=∠OFD,
∴OC∥DF,
∴∠CDF=∠OCD,
∵OD=OC,
∴∠ODC=∠OCD,
∴∠ADC=∠CDF.
(2)作ON⊥DF于N,延长DF交AB于M.
∵ON⊥DF,
∴DN=NF=3,
在RT△ODN中,∵∠OND=90°,OD=5,DN=3,
∴ON=
OD2-DN2 |
∵∠OCM+∠CMN=180°,∠OCM=90°,
∴∠OCM=∠CMN=∠MNO=90°,
∴四边形OCMN是矩形,
∴ON=CM=4,MN=OC=5,
在RT△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=8,
∴CD=
DM2+CM2 |
82+42 |
5 |
看了 如图,直线AB经过O上的点C...的网友还看了以下:
如图,OB是圆A的直径,A为圆心,OB=20.DP与圆相切于点D,DP垂直于PB,垂足为P,PB与 2020-04-26 …
如图,抛物线y=a(x+1)(x-5)与x轴的交点为M、N.直线y=kx+b 与x轴交于P(-2, 2020-05-13 …
已知抛物线Y等于aX²—2X+c与它的对称轴相较于点A(1,-4),与y轴交与点C,与X轴正半轴交 2020-05-16 …
如图 已知抛物线y=x2+bx+c与x轴交与A.B俩点【A在B点左侧】与y轴交与点C【0,-3】如 2020-05-16 …
如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在如图,抛物 2020-06-03 …
抛物线y=x2+bx+c(b小于等于0)的图像与x轴交于A`B两点,与y轴交于C点,其中点A坐标为 2020-06-29 …
`关于补角与余角.,.`关于补角与余角.已知角A与角B互为余角,角A与角C互为补角,角B与角C的和 2020-08-02 …
已知AB为圆的直径,CD垂直AB与圆交于C,垂足为D,以C为圆心,CD为半径作圆与前圆交于EF,EF 2020-11-27 …
已知,如图抛物线y=ax2+3ax+c(a》0)与外轴交与点C,与x交与A,B两点已知:如图,抛物线 2020-11-27 …
巳知以C(t,2/t)(t属于R,t不等于0)为圆心的圆与x轴交于O、A,与y轴交于O、B,其中O为 2020-11-28 …