早教吧 育儿知识 作业答案 考试题库 百科 知识分享

1.∫(-π/2到π/2)[(sinx/1+x^2)+(cosx)^2]dx2.∫(-π/2到π/2)[(绝对值x)+sinx)^2]dx1.π/22.π/2+(π^3/12)

题目详情
1.∫(-π/2到π/2) [(sinx/1+x^2)+(cosx)^2]dx 2.∫(-π/2到π/2) [(绝对值x)+sinx)^2]dx
1.π/2
2.π/2+(π^3/12)
▼优质解答
答案和解析
∫(-π/2到π/2) [(sinx/1+x^2)+(cosx)^2]dx
奇函数的积分为0
故∫(-π/2到π/2) [(sinx/1+x^2)+(cosx)^2]dx
=∫(-π/2到π/2) (cosx)^2dx
=2∫(0到π/2) (cosx)^2dx
=∫(0到π/2) (1+cos2x)dx

∫(-π/2到π/2) [(绝对值x)+sinx)^2]dx
=∫(-π/2到π/2) [(绝对值x)^2+(sinx)^2+2绝对值x*sinx]dx
绝对值x*sinx是奇函数
∫(-π/2到π/2) [(绝对值x)+sinx)^2]dx
=∫(-π/2到π/2) [(绝对值x)^2+(sinx)^2]dx
=2∫(0到π/2) [x^2+(sinx)^2]dx
看了 1.∫(-π/2到π/2)[...的网友还看了以下: