早教吧作业答案频道 -->数学-->
已知各项全不为零的数列{ak}的前k项和为Sk,且Sk=akak+1(k∈N*),其中a1=1。(1)求数列{ak}的通项公式;(2)对任意给定的正整数n(n≥2),数列{bk}满足(k=1,2,…,n-1
题目详情
已知各项全不为零的数列{a k }的前k项和为S k ,且S k = a k a k+1 (k∈N*),其中a 1 =1。(1)求数列{a k }的通项公式; (2)对任意给定的正整数n(n≥2),数列{b k }满足 (k=1,2,…,n-1),b 1 =1,求b 1 +b 2 +…+b n 。 |
▼优质解答
答案和解析
(1)当 ,由 及 ,得 当 时,由 ,得 因为 ,所以 从而 , 故 。(2)因为 ,所以 所以 故 。 |
看了 已知各项全不为零的数列{ak...的网友还看了以下:
∑(2^n)/(n^n)的收敛性你回答的是:取后一项后前一项的比.(2^n+1)/((n+1)^(n 2020-03-31 …
公差不为0的等差数列{an},a1=2,a2是a1与a4的等比中项(1)求数列{an}公差d(2) 2020-04-09 …
求数列0,1,1,2,2,3,3,4,4.的前n项和S当n是奇数时.S=2*{[(n-1)/2]* 2020-04-09 …
从每小题的A、B、C、D四个选项中找出所给单词的正确读音并在答题卡上将该选项涂黑.1.doorsA 2020-05-13 …
1.数列1/2,3/4,5/8,7/16,9/32,……的前n项和Sn=2.在等比数列{an}中, 2020-05-13 …
在等差数列{an}中,as=-2手s手,其前n项的和为Sn.若S2手s手2手s手-S2手手82手手 2020-05-14 …
填空(2道)1一个等腰三角形的两个内角比是4比1,顶角为()或()2在一个比中,前项是后项的1.2 2020-05-22 …
数列的通项a(n)的前几项和S(n)之间满足S(n)=2-3a(n)求a(n)与a(n-1)、s( 2020-06-03 …
拉普拉斯变换中极点与零点会不会重合(信号与系统)比如,对于(s+1)/(s^2-1)这个式子,是将 2020-06-04 …
有关数列的几个问题.1、等差数列{An}中,(1)Sn=m,Sm=n,求S(m+n)(括号里为下标 2020-06-06 …
a k a k+1 (k∈N*),其中a 1 =1。
(k=1,2,…,n-1),b 1 =1,求b 1 +b 2 +…+b n 。
,由
及
,得
时,由
,得
,
,
。
,
。