早教吧作业答案频道 -->数学-->
lim(x→0)lntan3x/lntan2x=lim(x→0)3(sec3x)^2/tan3x)/(2(sec2x)^2/tan2x)=(3/2)lim(x→0)tan2x/tan3x=1其中lim(x→0)3(sec3x)^2/tan3x)/(2(sec2x)^2/tan2x)=(3/2)lim(x→0)tan2x/tan3x是怎么得出的
题目详情
lim(x→0)lntan3x/lntan2x
=lim(x→0)3(sec3x)^2/tan3x)/(2(sec2x)^2/tan2x)
=(3/2)lim(x→0)tan2x/tan3x
=1
其中lim(x→0)3(sec3x)^2/tan3x)/(2(sec2x)^2/tan2x)
=(3/2)lim(x→0)tan2x/tan3x是怎么得出的
=lim(x→0)3(sec3x)^2/tan3x)/(2(sec2x)^2/tan2x)
=(3/2)lim(x→0)tan2x/tan3x
=1
其中lim(x→0)3(sec3x)^2/tan3x)/(2(sec2x)^2/tan2x)
=(3/2)lim(x→0)tan2x/tan3x是怎么得出的
▼优质解答
答案和解析
x→0 sec3x→1
看了 lim(x→0)lntan3...的网友还看了以下: