早教吧作业答案频道 -->数学-->
如图1、2是两个相似比为1:2的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC
题目详情
如图1、2是两个相似比为1:
的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE2+BF2=EF2;
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE2+BF2=EF2是否仍然成立?若成立,请给出证明;若不成立,请说明理由.


(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.
| 2 |
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE2+BF2=EF2;
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE2+BF2=EF2是否仍然成立?若成立,请给出证明;若不成立,请说明理由.


(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.
▼优质解答
答案和解析
证明:(1)连CD,如图4,
∵两个等腰直角三角形的相似比为1:
,
而小直角三角形的斜边等于大直角三角形的直角边,

∴点D为AB的中点,
∴CD=AD,∠4=∠A=45°,
又∵∠1+∠2=∠2+∠3=90°,
∴∠3=∠1,
∴△CDF≌△ADE,
∴CF=AE,
同理可得△CED≌△BFD,
∴CE=BF,
而CE2+CF2=EF2,
∴AE2+BF2=EF2;
(2)结论AE2+BF2=EF2仍然成立.理由如下:
把△CFB绕点C顺时针旋转90°,得到△CGA,如图5
∴CF=CG,AG=BF,∠4=∠1,∠B=∠GAC=45°,
∴∠GAE=90°,
而∠3=45°,
∴∠2+∠4=90°-45°=45°,
∴∠1+∠2=45°,
∴△CGE≌△CFE,
∴GE=EF,
在Rt△AGE中,AE2+AG2=GE2,
∴AE2+BF2=EF2;
(3)线段BM、MN、DN能构成直角三角形的三边长.理由如下:
把△ADF绕点A顺时针旋转90°得到△ABP,点N的对应点为Q,如图

∴∠4=∠2,∠1+∠3+∠4=90°,BP=DF,BQ=DN,AF=AP,
∵△CEF的周长等于正方形ABCD的周长的一半,
∴EF=BE+DF,
∴EF=EP,
∴△AEF≌△AEP,
∴∠1=∠3+∠4,
而AQ=AN,
∴△AMQ≌△AMN,
∴MN=QM,
而∠ADN=∠QBA=45°,∠ABD=45°,
∴∠QBN=90°,
∴BQ2+BM2=QM2,
∴BM2+DN2=MN2.
∵两个等腰直角三角形的相似比为1:
| 2 |
而小直角三角形的斜边等于大直角三角形的直角边,

∴点D为AB的中点,
∴CD=AD,∠4=∠A=45°,
又∵∠1+∠2=∠2+∠3=90°,
∴∠3=∠1,
∴△CDF≌△ADE,
∴CF=AE,
同理可得△CED≌△BFD,
∴CE=BF,
而CE2+CF2=EF2,
∴AE2+BF2=EF2;
(2)结论AE2+BF2=EF2仍然成立.理由如下:
把△CFB绕点C顺时针旋转90°,得到△CGA,如图5
∴CF=CG,AG=BF,∠4=∠1,∠B=∠GAC=45°,
∴∠GAE=90°,
而∠3=45°,
∴∠2+∠4=90°-45°=45°,
∴∠1+∠2=45°,
∴△CGE≌△CFE,
∴GE=EF,
在Rt△AGE中,AE2+AG2=GE2,
∴AE2+BF2=EF2;
(3)线段BM、MN、DN能构成直角三角形的三边长.理由如下:
把△ADF绕点A顺时针旋转90°得到△ABP,点N的对应点为Q,如图

∴∠4=∠2,∠1+∠3+∠4=90°,BP=DF,BQ=DN,AF=AP,
∵△CEF的周长等于正方形ABCD的周长的一半,
∴EF=BE+DF,
∴EF=EP,
∴△AEF≌△AEP,
∴∠1=∠3+∠4,
而AQ=AN,
∴△AMQ≌△AMN,
∴MN=QM,
而∠ADN=∠QBA=45°,∠ABD=45°,
∴∠QBN=90°,
∴BQ2+BM2=QM2,
∴BM2+DN2=MN2.
看了 如图1、2是两个相似比为1:...的网友还看了以下:
一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交 2020-04-06 …
如图所示,四边形ABCD是菱形,对角线AC与BD,相交与O角ACD=30度,BD=6 (1)证AB 2020-05-16 …
正方形ABCD中,将一个直角三角板的直角顶点与点A重合,一条直角边与边BC交于点E(点E不与点B和 2020-06-19 …
如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°∠EDF=30°,操作 2020-06-27 …
在HFSS里怎么判断极化拜托各位了3Q已经知道天线类型为线极化,怎么在HFSS里看是水平极化还是垂 2020-07-16 …
数学当中的角角边,与边角边,边边边,还有直角三角形求证有些不懂,请用图说明一下 2020-07-21 …
如图.将两块完全一样的透明等腰直角角形板ABC、DEF按如图所示的方式放置,使点D落在线段AB的中 2020-07-30 …
特殊直角三角形边与边,角与角的关系 2020-08-01 …
如图已知双曲线y=k/x(k>0)经过直角三角形OAB斜边OB的中点D且与直角边AB相交于点C若DE 2020-11-27 …
(2013•德惠市二模)观察与发展等边三角形OAB和等边三角形OCD如图①放置,发现△OAC≌△OB 2021-01-07 …