早教吧作业答案频道 -->数学-->
求下列微分方程的通解,xdy/dx=(yIn^2)y,[(y+1)^2]dy/dx+x^3=0,dy/dx=2^(x+y),6x+y求下列微分方程的通解,xdy/dx=(yIn^2)y,[(y+1)^2]dy/dx+x^3=0,dy/dx=2^(x+y),我有急用
题目详情
求下列微分方程的通解,xdy/dx=(yIn^2)y,[(y+1)^2]dy/dx+x^3=0,dy/dx=2^(x+y),6x+y
求下列微分方程的通解,xdy/dx=(yIn^2)y,[(y+1)^2]dy/dx+x^3=0,dy/dx=2^(x+y),我有急用
求下列微分方程的通解,xdy/dx=(yIn^2)y,[(y+1)^2]dy/dx+x^3=0,dy/dx=2^(x+y),我有急用
▼优质解答
答案和解析
1.求xdy/dx=yIn²y通解
∵xdy/dx=yIn²y ==>dy/(yIn²y)=dx/x
==>d(lny)/In²y=dx/x
==>-1/lny=ln│x│+C (C是积分常数)
经检验y=1也是原方程的解
∴原方程的通解是y=1或-1/lny=ln│x│+C (C是积分常数);
2.求[(y+1)²]dy/dx+x³=0通解
∵[(y+1)²]dy/dx+x³=0 ==>[(y+1)²]dy=-x³dx
==>(y+1)³/3=C/3-x^4/4 (C是积分常数)
==>(y+1)³=C-3x^4/4
∴原方程的通解是(y+1)³=C-3x^4/4 (C是积分常数);
3.求dy/dx=2^(x+y)通解
∵dy/dx=2^(x+y) ==>dy/dx=(2^x)(2^y)
==>dy/2^y=2^xdx
==>e^(-yln2)dy=e^(xln2)dx
==>e^(-yln2)d(-yln2)=-e^(xln2)d(xln2)
==>e^(-yln2)=C-e^(xln2) (C是积分常数)
==>2^(-y)=C-2^x
∴原方程的通解是2^(-y)=C-2^x (C是积分常数).
∵xdy/dx=yIn²y ==>dy/(yIn²y)=dx/x
==>d(lny)/In²y=dx/x
==>-1/lny=ln│x│+C (C是积分常数)
经检验y=1也是原方程的解
∴原方程的通解是y=1或-1/lny=ln│x│+C (C是积分常数);
2.求[(y+1)²]dy/dx+x³=0通解
∵[(y+1)²]dy/dx+x³=0 ==>[(y+1)²]dy=-x³dx
==>(y+1)³/3=C/3-x^4/4 (C是积分常数)
==>(y+1)³=C-3x^4/4
∴原方程的通解是(y+1)³=C-3x^4/4 (C是积分常数);
3.求dy/dx=2^(x+y)通解
∵dy/dx=2^(x+y) ==>dy/dx=(2^x)(2^y)
==>dy/2^y=2^xdx
==>e^(-yln2)dy=e^(xln2)dx
==>e^(-yln2)d(-yln2)=-e^(xln2)d(xln2)
==>e^(-yln2)=C-e^(xln2) (C是积分常数)
==>2^(-y)=C-2^x
∴原方程的通解是2^(-y)=C-2^x (C是积分常数).
看了 求下列微分方程的通解,xdy...的网友还看了以下:
求解二元函数,已知xy,函数也已知,怎么样用MATLAB求解?方程f(x,y) = p00 + p 2020-05-16 …
求方程(x+y)/(x^2-xy+y^2)=3/7的整数解不要用设x+y=3k,x^2-xy+y^ 2020-05-17 …
(-x/y)的2次方*(-y的2次方/x)/(-xy的4次方)(a的2次方b/c的3次方)/的2次 2020-06-04 …
分式的加减运算谁会真的很急x的2平方-1分之4-x的2平方+x分之x-1x-1分之x的2平方-x- 2020-06-06 …
matlab解方程组symsR0tx1x2xy[X,Y]=solve('R0*cos(t)=x2+ 2020-08-01 …
已知A={x|-1≤x≤3},B={yx|0≤y≤2},从A到B得对应法则分别为详见补充(1)x→ 2020-08-02 …
1.x^6-y^62.(x^2+4x+8)^2+3x^3-14x^2+24x3.2x^2+3xy-2 2020-10-31 …
看不懂下题过程,从“x,y是实数”开始,求解y+x-4=2√(x^+9),平方得x^+2(y-4)x 2020-10-31 …
方程组为x+2*y=4;x^2+y^2=8;方程组会解symsxyeq1=x+2*y-4;eq2=x 2020-11-01 …
一个关于偏导数的问题二元函数f(x,y):当(x,y)≠(0,0)时f(x,y)=(xy)/(x^2 2020-11-01 …