早教吧作业答案频道 -->数学-->
已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列对应值如下表:xy-1131-113(1)根据表格提供的数据求函数f(x)的一个解析式.(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为,
题目详情
已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列对应值如下表:
(1)根据表格提供的数据求函数f(x)的一个解析式.
(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为
,当
时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.
| x | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| y | -1 | 1 | 3 | 1 | -1 | 1 | 3 |
(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为
,当
时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.▼优质解答
答案和解析
(1)根据表格提供的数据,求出周期T,解出ω,利用最小值、最大值求出A、B,结合周期求出φ,可求函数f(x)的一个解析式.
(2)函数y=f(kx)(k>0)周期为
,求出k,
,推出
的范围,画出图象,数形结合容易求出m的范围.
【解析】
(1)设f(x)的最小正周期为T,得
,
由
,得ω=1,
又
,解得
令
,即
,解得
,
∴
.
(2)∵函数
的周期为
,
又k>0,∴k=3,
令
,∵
,∴
,
如图,sint=s在
上有两个不同的解,则
,
∴方程f(kx)=m在
时恰好有两个不同的解,则
,
即实数m的取值范围是
.
(2)函数y=f(kx)(k>0)周期为
,求出k,
,推出
的范围,画出图象,数形结合容易求出m的范围.
【解析】(1)设f(x)的最小正周期为T,得
,由
,得ω=1,又
,解得
令
,即
,解得
,∴
.(2)∵函数
的周期为
,又k>0,∴k=3,
令
,∵
,∴
,如图,sint=s在
上有两个不同的解,则
,∴方程f(kx)=m在
时恰好有两个不同的解,则
,即实数m的取值范围是
.
看了 已知函数f(x)=Asin(...的网友还看了以下:
下表是元素周期表中短周期元素的一部分,表中所列字母分别代表一种元素,根据A~J在周期表中的位置,用 2020-04-08 …
下表是元素周期表示意图的一部分,根据A~I在元素周期表中的位置,用元素符号或化学式回答下列问题:族 2020-05-02 …
下表是元素周期表的一部分,根据A-K在周期表中的位置,用元素符号或化学式回答下列问题.周期族ⅠAⅡ 2020-05-02 …
初二一道英语题·谢谢!113.Pleaseanswerthequestioninaloudvoic 2020-05-14 …
初三数学二次根式(1)若m,n为一等腰△的两边之长,且满足等式2根号(3m-6)+3根号(2-m) 2020-06-06 …
根周囊肿最重要的诊断依据为( )A.牙髓无活力B.根尖周透射区周边有白线围绕C.根管内有浅黄透明囊 2020-06-07 …
已知A的逆矩阵为(111,121,113),求A的伴随矩阵的逆矩阵 2020-07-18 …
做匀速圆周运动的物体其加速度的数值与半径成正比还是反比啊做匀速圆周运动的物体的v和w保持不变,那么 2020-07-30 …
已知a,b,c是△ABC的∠A,∠B,∠C对边,a>b,关于x的方程x²-2(a+b)x+2ab+ 2020-07-30 …
已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()x…-113…y 2020-12-31 …






