早教吧作业答案频道 -->数学-->
设F(x)在区间[a,b]上连续,(a,b)内可导,且f(a)=f(b)=1,证明存在,ξ,η∈(a,b)使e^η-ξ乘以[f(η)+f'(η)]=1
题目详情
设F(x)在区间[a,b]上连续,(a,b)内可导,且f(a)=f(b)=1,证明存在,ξ,η∈(a,b)使e^η-ξ 乘以[f(η)+f'(η)]=1
▼优质解答
答案和解析
构造函数F(X)=e^Xf(X),G(X)=e^X
F(a)=e^a,F(b)=e^b;G(a)=e^a,G(b)=e^b.
由拉格朗日中值定理:必存在一点η属于(a,b),使F'(η)=[F(b)-F(a)]/(b-a),同理,也有一点ξ属于(a,b),使G'(ξ)=[G(b)-G(a)]/(b-a),而[F(b)-F(a)]/(b-a)=)=[G(b)-G(a)]/(b-a),=(e^b-e^a)/(b-a),所以有F'(η)=G'(ξ).而F'(η)=e^η[f(η)+f'(η)],G'(ξ)=e^ξ.
然后整理一下就得证了
F(a)=e^a,F(b)=e^b;G(a)=e^a,G(b)=e^b.
由拉格朗日中值定理:必存在一点η属于(a,b),使F'(η)=[F(b)-F(a)]/(b-a),同理,也有一点ξ属于(a,b),使G'(ξ)=[G(b)-G(a)]/(b-a),而[F(b)-F(a)]/(b-a)=)=[G(b)-G(a)]/(b-a),=(e^b-e^a)/(b-a),所以有F'(η)=G'(ξ).而F'(η)=e^η[f(η)+f'(η)],G'(ξ)=e^ξ.
然后整理一下就得证了
看了 设F(x)在区间[a,b]上...的网友还看了以下:
求两函数极限区间的题目1.设f(x)在[0,2a]上连续且发f(0)=f(2a)证明:至少存在一点 2020-06-05 …
为什的f(x)在区间上连续且可导,也xf(x)在该区间上也连续且可导? 2020-07-16 …
关于导数的一道证明题已知函数f(x)在闭区间0到正无穷上连续,且f(0)=0,f'(x)在闭区间0 2020-07-19 …
证明方程x=asinx+b(a>0,b>0)至少有一个正根,并且不超过a+bf(x)在闭区间[0, 2020-07-20 …
高等数学综合题:已知函数f(x)在区间[a,b]上连续,且f(x)>0,设函数F(x)=∫[a→x 2020-07-22 …
定积分的换元积分法的三个条件为什么必须要满足?设函数f(x)在区间[a,b]上连续,且函数x=φ( 2020-07-31 …
高数证明问题1.设函数f(x)在闭区间[0,A]上连续,且f(0)=0,如果f'(x)存在且为增函 2020-08-01 …
一个函数在某区间连续且严格单调且有反函数,则它的反函数必在那个区间连续且严格单调吗?为什么? 2020-08-02 …
证明若任意xy属于R有fx+y=fx+fy,且fx在0连续,则函数fx在R上连续,且证明若任意xy属 2020-11-01 …
问个高数里面关于连续的问题书本上说函数在某个点连续的充要条件是函数在这个点左连续且右连续;那么问题出 2020-12-26 …