早教吧作业答案频道 -->数学-->
求(1-x^2)/(1+x^4)的反导
题目详情
求(1-x^2)/(1+x^4)的反导
▼优质解答
答案和解析
上下除以x²
原式=-∫(1-1/x²)/(x²+1/x²) dx
=-∫d(x+1/x)/[(x+1/x)²-2]
令a=x+1/x
原式=-∫da/(a+√2)(a-√2)
=-∫1/2√2*[1/(a-√2)-1/(a+√2)]da
=-√2/4*[ln|a-√2|-ln|a+√2|]+C
=-√2/4*ln[|x+1/x-√2|/|x+1/x+√2|]+C
原式=-∫(1-1/x²)/(x²+1/x²) dx
=-∫d(x+1/x)/[(x+1/x)²-2]
令a=x+1/x
原式=-∫da/(a+√2)(a-√2)
=-∫1/2√2*[1/(a-√2)-1/(a+√2)]da
=-√2/4*[ln|a-√2|-ln|a+√2|]+C
=-√2/4*ln[|x+1/x-√2|/|x+1/x+√2|]+C
看了 求(1-x^2)/(1+x^...的网友还看了以下: